8.286 Lecture 8
 October 1, 2013

DYNAMICS OF HOMOGENEOUS EXPANSION, PART IV

Summary: Mathematical Model

$$
\begin{aligned}
t_{i} & \equiv \text { time of initial picture } \\
R_{\text {max }, i} & \equiv \text { initial maximum radius } \\
\rho_{i} & \equiv \text { initial mass density } \\
\vec{v}_{i} & =H_{i} \vec{r}
\end{aligned}
$$

Summary: Equations

Want: $r\left(r_{i}, t\right) \equiv$ radius at t of shell initially at r_{i}
Find: $r\left(r_{i}, t\right)=a(t) r_{i}$, where

$$
\begin{aligned}
& \text { Friedmann }\left\{\ddot{a}=-\frac{4 \pi}{3} G \rho(t) a\right. \\
& \text { Equations }\left\{H^{2}=\left(\frac{\dot{a}}{a}\right)^{2}=\frac{8 \pi}{3} G \rho-\frac{k c^{2}}{a^{2}} \quad\right. \text { (Friedmann Eq.) }
\end{aligned}
$$

and

$$
\rho(t) \propto \frac{1}{a^{3}(t)}, \text { or } \rho(t)=\left[\frac{a\left(t_{1}\right)}{a(t)}\right]^{3} \rho\left(t_{1}\right) \text { for any } t_{1}
$$

Units: $[r]=$ meter, $\left[r_{i}\right]=$ notch, $[a(t)]=\mathrm{m} /$ notch, $[k]=1 /$ notch 2.
Alan Guth

Summary: Conventions

Us: Notch is arbitrary (free to be redefined each time we use it). [Our construction used $a\left(t_{i}\right)=1 \mathrm{~m} /$ notch, but we can interpret this equation as the definition of t_{i}. But we can forget the definition of t_{i} if we don't intend to use it.]

Ryden: $a\left(t_{0}\right)=1$ (where $t_{0}=$ now). For us, $1 \rightarrow 1 \mathrm{~m} /$ notch.
Many Other Books: if $k \neq 0$, then $k= \pm 1$.
(For us, $\pm 1 \rightarrow \pm 1 \mathrm{~m} /$ notch.)

Summary: Types of Solutions

$$
\dot{a}^{2}=\frac{8 \pi G}{3} \frac{\rho\left(t_{1}\right) a^{3}\left(t_{1}\right)}{a(t)}-k c^{2}
$$

For intuition, remember that $k \propto-E$, where E is a measure of the energy of the system.

Types of Solutions:

1) $k<0(E>0)$: unbound system. $\dot{a}^{2}>\left(-k c^{2}\right)>0$, so the universe expands forever. Open Universe.
2) $k>0(E<0)$: bound system. $\dot{a}^{2} \geq 0 \Longrightarrow$

$$
a_{\max }=\frac{8 \pi G}{3} \frac{\rho\left(t_{1}\right) a^{3}\left(t_{1}\right)}{k c^{2}} .
$$

Universe reaches maximum size and then contracts to a Big Crunch. Closed Universe.
3) $k=0(E=0)$: critical mass density.

$$
H^{2}=\frac{8 \pi G}{3} \rho-\underbrace{\frac{k c^{2}}{a^{2}}}_{=0} \Longrightarrow \quad \equiv \rho_{c}=\frac{3 H^{2}}{8 \pi G}
$$

Flat Universe.

Summary: $\rho>\rho_{c} \Longleftrightarrow$ closed, $\rho<\rho_{c} \Longleftrightarrow$ open, $\rho=\rho_{c} \Longleftrightarrow$ flat. Numerical value: For $H=67.3 \mathrm{~km}-\mathrm{s}^{-1}-\mathrm{Mpc}^{-1}$ (Planck 2013 plus other experiments),

$$
\rho_{c}=8.4 \times 10^{-30} \mathrm{~g} / \mathrm{cm}^{3} \approx 5 \text { proton masses per } \mathrm{m}^{3}
$$

Definition: $\Omega \equiv \frac{\rho}{\rho_{c}}$.
Alan Guth
Massachusetts Institute of Technology
8.286 Lecture 8, October 1

Summary: Evolution of a Flat Universe

If $k=0$, then

$$
\begin{aligned}
& \left(\frac{\dot{a}}{a}\right)^{2}=\frac{8 \pi G}{3} \rho=\frac{\text { const }}{a^{3}} \Longrightarrow \frac{d a}{d t}=\frac{\text { const }}{a^{1 / 2}} \\
& \Longrightarrow a^{1 / 2} a d a=\text { const } d t \quad \Longrightarrow \quad \frac{2}{3} a^{3 / 2}=(\text { const }) t+c^{\prime} .
\end{aligned}
$$

Choose the zero of time to make $c^{\prime}=0$, and then

$$
a(t) \propto t^{2 / 3}
$$

