

Summary of Lecture 8

Age of a Flat Matter-Dominated Universe:

$$
a(t) \propto t^{2 / 3} \quad \Longrightarrow \quad t=\frac{2}{3} H^{-1}
$$

For $H=67.3 \pm 1.2 \mathrm{~km}-\mathrm{s}^{-1}-\mathrm{Mpc}^{-1}$, age $=9.5-9.9$ billion years - but stars are older. Conclusion: our universe is nearly flat, but not matter-dominated.
The Big Bang Singularity: $a(0)=0$, with infinite density, is a
feature of our model, but not necessarily the real universe.

1017

Horizon Distance: the present distance of the furthest particles from which light has had time to reach us.

$$
a(t) \propto t^{2 / 3} \quad \Longrightarrow \quad \ell_{p, \text { horizon }}=3 c t=2 c H^{-1}
$$

Evolution of a Closed Universe:

$$
\left(\frac{\dot{a}}{a}\right)^{2}=\frac{8 \pi}{3} G \rho-\frac{k c^{2}}{a^{2}}, \quad \rho(t) a^{3}(t)=\text { constant } .
$$

New variables:

$$
\begin{gathered}
\tilde{a}(t) \equiv \frac{a(t)}{\sqrt{k}}, \quad \tilde{t} \equiv c t \quad \text { (both with units of distance) } \\
\left(\frac{d \tilde{a}}{d \tilde{t}}\right)^{2}=\frac{2 \alpha}{\tilde{a}}-1 \text { where } \quad \alpha=\frac{4 \pi}{3} \frac{G \rho \tilde{a}^{3}}{c^{2}}=\text { constant }
\end{gathered}
$$

