8.286 Lecture 9
 October 8, 2013

DYNAMICS OF HOMOGENEOUS EXPANSION, PART V (LAST!)

Summary of Lecture 8

Age of a Flat Matter-Dominated Universe:

$$
a(t) \propto t^{2 / 3} \quad \Longrightarrow \quad t=\frac{2}{3} H^{-1}
$$

For $H=67.3 \pm 1.2 \mathrm{~km}^{-\mathrm{s}^{-1}}-\mathrm{Mpc}^{-1}$, age $=9.5-9.9$ billion years - but stars are older. Conclusion: our universe is nearly flat, but not matter-dominated.

Summary of Lecture 8

Age of a Flat Matter-Dominated Universe:

$$
a(t) \propto t^{2 / 3} \quad \Longrightarrow \quad t=\frac{2}{3} H^{-1}
$$

For $H=67.3 \pm 1.2 \mathrm{~km}-\mathrm{s}^{-1}-\mathrm{Mpc}^{-1}$, age $=9.5-9.9$ billion years - but stars are older. Conclusion: our universe is nearly flat, but not matter-dominated.

The Big Bang Singularity: $a(0)=0$, with infinite density, is a feature of our model, but not necessarily the real universe.

Horizon Distance: the present distance of the furthest particles from which light has had time to reach us.

$$
a(t) \propto t^{2 / 3} \quad \Longrightarrow \quad \ell_{p, \text { horizon }}=3 c t=2 c H^{-1}
$$

Horizon Distance: the present distance of the furthest particles from which light has had time to reach us.

$$
a(t) \propto t^{2 / 3} \quad \Longrightarrow \quad \ell_{p, \text { horizon }}=3 c t=2 c H^{-1}
$$

Evolution of a Closed Universe:

$$
\left(\frac{\dot{a}}{a}\right)^{2}=\frac{8 \pi}{3} G \rho-\frac{k c^{2}}{a^{2}}, \quad \rho(t) a^{3}(t)=\text { constant }
$$

New variables:

$$
\begin{gathered}
\tilde{a}(t) \equiv \frac{a(t)}{\sqrt{k}}, \quad \tilde{t} \equiv c t \quad \text { (both with units of distance) } \\
\left(\frac{d \tilde{a}}{d \tilde{t}}\right)^{2}=\frac{2 \alpha}{\tilde{a}}-1 \text { where } \quad \alpha=\frac{4 \pi}{3} \frac{G \rho \tilde{a}^{3}}{c^{2}}=\text { constant }
\end{gathered}
$$

$$
\left(\frac{d \tilde{a}}{d \tilde{t}}\right)^{2}=\frac{2 \alpha}{\tilde{a}}-1 \quad \Longrightarrow \quad d \tilde{t}=\frac{\tilde{a} d \tilde{a}}{\sqrt{2 \alpha \tilde{a}-\tilde{a}^{2}}}
$$

Then

$$
\tilde{t}_{f}=\int_{0}^{\tilde{t}_{f}} d \tilde{t}=\int_{0}^{\tilde{a}_{f}} \frac{\tilde{a} d \tilde{a}}{\sqrt{2 \alpha \tilde{a}-\tilde{a}^{2}}}
$$

where \tilde{t}_{f} is an arbitrary choice for a "final time" for the calculation, and \tilde{a}_{f} is the value of \tilde{a} at time \tilde{t}_{f}.

Evolution of a Closed Universe

$$
\begin{aligned}
c t & =\alpha(\theta-\sin \theta) \\
\frac{a}{\sqrt{k}} & =\alpha(1-\cos \theta)
\end{aligned}
$$

Evolution of a Closed Universe

$$
\begin{aligned}
c t & =\alpha(\theta-\sin \theta) \\
\frac{a}{\sqrt{k}} & =\alpha(1-\cos \theta)
\end{aligned}
$$

Evolution of a Closed Universe

$$
\begin{aligned}
c t & =\alpha(\theta-\sin \theta) \\
\frac{a}{\sqrt{k}} & =\alpha(1-\cos \theta)
\end{aligned}
$$

$$
t=\frac{\Omega}{2|H|(\Omega-1)^{3 / 2}}\left\{\arcsin \left(\pm \frac{2 \sqrt{\Omega-1}}{\Omega}\right) \mp \frac{2 \sqrt{\Omega-1}}{\Omega}\right\}
$$

$$
t=\frac{\Omega}{2|H|(\Omega-1)^{3 / 2}}\left\{\arcsin \left(\pm \frac{2 \sqrt{\Omega-1}}{\Omega}\right) \mp \frac{2 \sqrt{\Omega-1}}{\Omega}\right\} .
$$

Quadrant	Phase	Ω	Sign Choice	$\sin ^{-1}()$
1	Expanding	1 to 2	Upper	0 to $\frac{\pi}{2}$
2	Expanding	2 to ∞	Upper	$\frac{\pi}{2}$ to π
3	Contracting	∞ to 2	Lower	π to $\frac{3 \pi}{2}$
4	Contracting	2 to 1	Lower	$\frac{3 \pi}{2}$ to 2π

