8.286 Lecture 12
 October 22, 2013

NON-EUCLIDEAN SPACES: OPEN UNIVERSES AND THE SPACETIME METRIC

Summary of Lecture 11: Surface of a Sphere

$$
x^{2}+y^{2}+z^{2}=R^{2}
$$

Alan Guth
Massachusetts Institute of Technology
8.286 Lecture 12, October 22

Polar Coordinates:

$$
\begin{aligned}
& x=R \sin \theta \cos \phi \\
& y=R \sin \theta \sin \phi \\
& z=R \cos \theta
\end{aligned}
$$

Varying ϕ :
$d s=R \sin \theta d \phi$

Varying θ and ϕ

$$
\begin{array}{|l|l|}
\hline \text { Varying } \theta: & d s=R d \theta \\
\hline
\end{array}
$$

Varying $\phi: \quad d s=R \sin \theta d \phi$

$$
d s^{2}=R^{2}\left(d \theta^{2}+\sin ^{2} \theta d \phi^{2}\right)
$$

Review of Lecture 11: A Closed Three-Dimensional Space

$$
x^{2}+y^{2}+z^{2}+w^{2}=R^{2}
$$

$x=R \sin \psi \sin \theta \cos \phi$
$y=R \sin \psi \sin \theta \sin \phi$
$z=R \sin \psi \cos \theta$
$w=R \cos \psi$,

$d s=R d \psi$

Metric for the Closed 3D Space

$$
\text { Varying } \psi: \quad d s=R d \psi
$$

Varying θ or $\phi: \quad d s^{2}=R^{2} \sin ^{2} \psi\left(d \theta^{2}+\sin ^{2} \theta d \phi^{2}\right)$

If the variations are orthogonal to each other, then

$$
d s^{2}=R^{2}\left[d \psi^{2}+\sin ^{2} \psi\left(d \theta^{2}+\sin ^{2} \theta d \phi^{2}\right)\right]
$$

Alan Guth

Proof of Orthogonality of Variations

Let $d \vec{R}_{\psi}=$ displacement of point when ψ is changed to $\psi+d \psi$.
Let $d \vec{R}_{\theta}=$ displacement of point when θ is changed to $\theta+d \theta$.
\& $d \vec{R}_{\theta}$ has no w-component $\Longrightarrow d \vec{R}_{\psi} \cdot d \vec{R}_{\theta}=d \vec{R}_{\psi}^{(3)} \cdot d \vec{R}_{\theta}^{(3)}$, where (3) denotes the projection into the $x-y-z$ subspace.
is $d \vec{R}_{\psi}^{(3)}$ is radial; $d \vec{R}_{\theta}^{(3)}$ is tangential

$$
\Longrightarrow \quad d \vec{R}_{\psi}^{(3)} \cdot d \vec{R}_{\theta}^{(3)}=0
$$

Review of Lecture 11: Implications of General Relativity

is $d s^{2}=R^{2}\left[d \psi^{2}+\sin ^{2} \psi\left(d \theta^{2}+\sin ^{2} \theta d \phi^{2}\right)\right]$, where R is radius of curvature.
is According to GR, matter causes space to curve.
is R cannot be arbitrary. Instead, $R^{2}(t)=\frac{a^{2}(t)}{k}$.
is Finally,

$$
\mathrm{d} s^{2}=a^{2}(t)\left\{\frac{\mathrm{d} r^{2}}{1-k r^{2}}+r^{2}\left(\mathrm{~d} \theta^{2}+\sin ^{2} \theta \mathrm{~d} \phi^{2}\right)\right\}
$$

where $r=\frac{\sin \psi}{\sqrt{k}}$. Called the Robertson-Walker metric.

