8.286 Lecture 14 October 29, 2013

THE GEODESIC EQUATION

Summary of Lecture 13: Adding Time to the Robertson-Walker Metric

$$
\mathrm{d} s^{2}=-c^{2} \mathrm{~d} t^{2}+a^{2}(t)\left\{\frac{\mathrm{d} r^{2}}{1-k r^{2}}+r^{2}\left(\mathrm{~d} \theta^{2}+\sin ^{2} \theta \mathrm{~d} \phi^{2}\right)\right\}
$$

Meaning:
it If $d s^{2}>0$, it is the square of the spatial separation measured by a local free-falling observer for whom the two events happen at the same time.
is If $d s^{2}<0$, it is $-c^{2}$ times the square of the time separation measured by a local free-falling observer for whom the two events happen at the same location.
it If $d s^{2}=0$, then the two events can be joined by a light pulse.

Adding Time to the Robertson-Walker Metric

$$
\mathrm{d} s^{2}=-c^{2} \mathrm{~d} t^{2}+a^{2}(t)\left\{\frac{\mathrm{d} r^{2}}{1-k r^{2}}+r^{2}\left(\mathrm{~d} \theta^{2}+\sin ^{2} \theta \mathrm{~d} \phi^{2}\right)\right\}
$$

Application: The Geodesic Equation.

THE GEODESIC EQUATION

Notation: $\mathrm{d} s^{2}=g_{i j}\left(x^{k}\right) \mathrm{d} x^{i} \mathrm{~d} x^{j}$.
Description of path from A to B :

$$
x^{i}(\lambda), \text { where } x^{i}(0)=x_{A}^{i}, \quad x^{i}\left(\lambda_{f}\right)=x_{B}^{i}
$$

Distance from $x^{i}(\lambda)$ to $x^{i}(\lambda+\mathrm{d} \lambda)$:

$$
\mathrm{d} s^{2}=g_{i j}\left(x^{k}(\lambda)\right) \frac{\mathrm{d} x^{i}}{\mathrm{~d} \lambda} \frac{\mathrm{~d} x^{j}}{\mathrm{~d} \lambda} \mathrm{~d} \lambda^{2}
$$

Distance from A to B :

$$
S\left[x^{i}(\lambda)\right]=\int_{0}^{\lambda_{f}} \sqrt{g_{i j}\left(x^{k}(\lambda)\right) \frac{\mathrm{d} x^{i}}{\mathrm{~d} \lambda} \frac{\mathrm{~d} x^{j}}{\mathrm{~d} \lambda}} \mathrm{~d} \lambda
$$

Varying the path (calculus of variations, 1696):

$$
\begin{gathered}
\tilde{x}^{i}(\lambda)=x^{i}(\lambda)+\alpha w^{i}(\lambda) \\
w^{i}(0)=0, \quad w^{i}\left(\lambda_{f}\right)=0 \\
\left.\frac{\mathrm{~d} S\left[\tilde{x}^{i}(\lambda)\right]}{\mathrm{d} \alpha}\right|_{\alpha=0}=0 \\
\text { for all } w^{i}(\lambda)
\end{gathered}
$$

where
$S\left[\tilde{x}^{i}(\lambda)\right]=\int_{0}^{\lambda_{f}} \sqrt{A(\lambda, \alpha)} \mathrm{d} \lambda, \quad A(\lambda, \alpha)=g_{i j}\left(\tilde{x}^{k}(\lambda)\right) \frac{\mathrm{d} \tilde{x}^{i}}{\mathrm{~d} \lambda} \frac{\mathrm{~d} \tilde{x}^{j}}{\mathrm{~d} \lambda}$.

$$
\begin{aligned}
\left.\frac{\mathrm{d} S\left[\tilde{x}^{i}(\lambda)\right]}{\mathrm{d} \alpha}\right|_{\alpha=0} & =\frac{1}{2} \int_{0}^{\lambda_{f}} \frac{1}{\sqrt{A(\lambda, 0)}} \\
& \times\left\{\frac{\partial g_{i j}}{\partial x^{k}} w^{k} \frac{\mathrm{~d} x^{i}}{\mathrm{~d} \lambda} \frac{\mathrm{~d} x^{j}}{\mathrm{~d} \lambda}+2 g_{i j} \frac{\mathrm{~d} w^{i}}{\mathrm{~d} \lambda} \frac{\mathrm{~d} x^{j}}{\mathrm{~d} \lambda}\right\} \mathrm{d} \lambda
\end{aligned}
$$

$$
\begin{aligned}
\left.\frac{\mathrm{d} S\left[\tilde{x}^{i}(\lambda)\right]}{\mathrm{d} \alpha}\right|_{\alpha=0} & =\frac{1}{2} \int_{0}^{\lambda_{f}} \frac{1}{\sqrt{A(\lambda, 0)}} \\
& \times\left\{\frac{\partial g_{i j}}{\partial x^{k}} w^{k} \frac{\mathrm{~d} x^{i}}{\mathrm{~d} \lambda} \frac{\mathrm{~d} x^{j}}{\mathrm{~d} \lambda}+2 g_{i j} \frac{\mathrm{~d} w^{i}}{\mathrm{~d} \lambda} \frac{\mathrm{~d} x^{j}}{\mathrm{~d} \lambda}\right\} \mathrm{d} \lambda .
\end{aligned}
$$

Integrate second term by parts!

$$
\begin{aligned}
\left.\frac{\mathrm{d} S\left[\tilde{x}^{i}(\lambda)\right]}{\mathrm{d} \alpha}\right|_{\alpha=0} & =\frac{1}{2} \int_{0}^{\lambda_{f}} \frac{1}{\sqrt{A(\lambda, 0)}} \\
& \times\left\{\frac{\partial g_{i j}}{\partial x^{k}} w^{k} \frac{\mathrm{~d} x^{i}}{\mathrm{~d} \lambda} \frac{\mathrm{~d} x^{j}}{\mathrm{~d} \lambda}+2 g_{i j} \frac{\mathrm{~d} w^{i}}{\mathrm{~d} \lambda} \frac{\mathrm{~d} x^{j}}{\mathrm{~d} \lambda}\right\} \mathrm{d} \lambda
\end{aligned}
$$

Integrate second term by parts!

$\left.\frac{\mathrm{d} S}{\mathrm{~d} \alpha}\right|_{\alpha=0}=\int_{0}^{\lambda_{f}}\left\{\frac{1}{2 \sqrt{A}} \frac{\partial g_{j k}}{\partial x^{i}} \frac{\mathrm{~d} x^{j}}{\mathrm{~d} \lambda} \frac{\mathrm{~d} x^{k}}{\mathrm{~d} \lambda}-\frac{\mathrm{d}}{\mathrm{d} \lambda}\left[\frac{1}{\sqrt{A}} g_{i j} \frac{\mathrm{~d} x^{j}}{\mathrm{~d} \lambda}\right]\right\} w^{i}(\lambda) \mathrm{d} \lambda$.

$$
\begin{aligned}
\left.\frac{\mathrm{d} S\left[\tilde{x}^{i}(\lambda)\right]}{\mathrm{d} \alpha}\right|_{\alpha=0} & =\frac{1}{2} \int_{0}^{\lambda_{f}} \frac{1}{\sqrt{A(\lambda, 0)}} \\
& \times\left\{\frac{\partial g_{i j}}{\partial x^{k}} w^{k} \frac{\mathrm{~d} x^{i}}{\mathrm{~d} \lambda} \frac{\mathrm{~d} x^{j}}{\mathrm{~d} \lambda}+2 g_{i j} \frac{\mathrm{~d} w^{i}}{\mathrm{~d} \lambda} \frac{\mathrm{~d} x^{j}}{\mathrm{~d} \lambda}\right\} \mathrm{d} \lambda
\end{aligned}
$$

Integrate second term by parts!

$\left.\frac{\mathrm{d} S}{\mathrm{~d} \alpha}\right|_{\alpha=0}=\int_{0}^{\lambda_{f}}\left\{\frac{1}{2 \sqrt{A}} \frac{\partial g_{j k}}{\partial x^{i}} \frac{\mathrm{~d} x^{j}}{\mathrm{~d} \lambda} \frac{\mathrm{~d} x^{k}}{\mathrm{~d} \lambda}-\frac{\mathrm{d}}{\mathrm{d} \lambda}\left[\frac{1}{\sqrt{A}} g_{i j} \frac{\mathrm{~d} x^{j}}{\mathrm{~d} \lambda}\right]\right\} w^{i}(\lambda) \mathrm{d} \lambda$.

$$
\Longrightarrow \frac{\mathrm{d}}{\mathrm{~d} \lambda}\left[\frac{1}{\sqrt{A}} g_{i j} \frac{\mathrm{~d} x^{j}}{\mathrm{~d} \lambda}\right]=\frac{1}{2 \sqrt{A}} \frac{\partial g_{j k}}{\partial x^{i}} \frac{\mathrm{~d} x^{j}}{\mathrm{~d} \lambda} \frac{\mathrm{~d} x^{k}}{\mathrm{~d} \lambda} .
$$

