8.286 Lecture 15 October 31, 2013

BLACK-BODY RADIATION AND THE EARLY HISTORY OF THE UNIVERSE

Summary of Lecture 14: THE SPACETIME GEODESIC EQUATION

$$\frac{\mathrm{d}}{\mathrm{d}\tau} \left[g_{\mu\nu} \, \frac{\mathrm{d}x^{\nu}}{\mathrm{d}\tau} \right] = \frac{1}{2} \frac{\partial g_{\lambda\sigma}}{\partial x^{\mu}} \, \frac{\mathrm{d}x^{\lambda}}{\mathrm{d}\tau} \frac{\mathrm{d}x^{\sigma}}{\mathrm{d}\tau} \; .$$

★ Use indices μ , ν , etc., which are summed from 0 to 3, where $x^0 \equiv t$.

 \checkmark Use τ to parameterize the path, where τ = proper time measured along the path.

THE SCHWARZSCHILD METRIC

$$ds^{2} = -c^{2}d\tau^{2} = -\left(1 - \frac{2GM}{rc^{2}}\right)c^{2}dt^{2} + \left(1 - \frac{2GM}{rc^{2}}\right)^{-1}dr^{2} + r^{2}d\theta^{2} + r^{2}\sin^{2}\theta d\phi^{2}.$$

- \checkmark Describes the metric for any spherically symmetric mass distribution, for the region outside the mass distribution. M is the mass of the object, G is Newton's constant, and c is (of course) the speed of light.
- \checkmark At $r = R_S$, where

$$R_{\rm S} = \frac{2GM}{c^2}$$

is called the Schwarzschild horizon, the metric is singular. But the singularity is not physical, and can be removed by a different choice of coordinates. $R_{\rm S}$ is, however, a horizon: anything with $r < R_{\rm S}$ can never get out.

RADIAL GEODESICS

 \checkmark For $\mu = r$, the geodesic equation gives

$$\frac{\mathrm{d}}{\mathrm{d}\tau} \left[g_{rr} \frac{\mathrm{d}r}{\mathrm{d}\tau} \right] = \frac{1}{2} \partial_r g_{rr} \left(\frac{\mathrm{d}r}{\mathrm{d}\tau} \right)^2 + \frac{1}{2} \partial_r g_{tt} \left(\frac{\mathrm{d}t}{\mathrm{d}\tau} \right)^2 \; .$$

which simplifies to

$$\frac{\mathrm{d}^2 r}{\mathrm{d}\tau^2} = -\frac{GM}{r^2} \; .$$

It looks like Newton, but r is not really the distance from the origin, and τ is the proper time measured along the trajectory.

Solving the Radial Infall Equation

 \checkmark The proper time τ needed to reach radial variable r is

$$\tau(r) = \sqrt{\frac{r_0}{2GM}} \left\{ r_0 \tan^{-1} \left(\sqrt{\frac{r_0 - r}{r}} \right) + \sqrt{r(r_0 - r)} \right\} .$$

The infalling object will be ripped apart by the singularity at r = 0 in a finite amount of the object's proper time.

 \bigstar But from the outside, it will take an infinite amount of coordinate time t before the object reaches the horizon.

