8.286 Lecture 15
October 31, 2013

BLACK-BODY RADIATION AND
 THE EARLY HISTORY OF THE UNIVERSE

Summary of Lecture 14: THE SPACETIME GEODESIC EQUATION

$$
\frac{\mathrm{d}}{\mathrm{~d} \tau}\left[g_{\mu \nu} \frac{\mathrm{d} x^{\nu}}{\mathrm{d} \tau}\right]=\frac{1}{2} \frac{\partial g_{\lambda \sigma}}{\partial x^{\mu}} \frac{\mathrm{d} x^{\lambda}}{\mathrm{d} \tau} \frac{\mathrm{~d} x^{\sigma}}{\mathrm{d} \tau} .
$$

is Use indices μ, ν, etc., which are summmed from 0 to 3 , where $x^{0} \equiv t$.
is Use τ to parameterize the path, where $\tau=$ proper time measured along the path.

THE SCHW ARZSCHILD METRIC

$$
\begin{aligned}
\mathrm{d} s^{2}=-c^{2} \mathrm{~d} \tau^{2}=- & \left(1-\frac{2 G M}{r c^{2}}\right) c^{2} \mathrm{~d} t^{2}+\left(1-\frac{2 G M}{r c^{2}}\right)^{-1} \mathrm{~d} r^{2} \\
& +r^{2} \mathrm{~d} \theta^{2}+r^{2} \sin ^{2} \theta \mathrm{~d} \phi^{2}
\end{aligned}
$$

it Describes the metric for any spherically symmetric mass distribution, for the region outside the mass distribution. M is the mass of the object, G is Newton's constant, and c is (of course) the speed of light.
\& At $r=R_{S}$, where

$$
R_{\mathrm{S}}=\frac{2 G M}{c^{2}}
$$

is called the Schwarzschild horizon, the metric is singular. But the singularity is not physical, and can be removed by a different choice of coordinates. R_{S} is, however, a horizon: anything with $r<R_{\mathrm{S}}$ can never get out.

RADIAL GEODESICS

For $\mu=r$, the geodesic equation gives

$$
\frac{\mathrm{d}}{\mathrm{~d} \tau}\left[g_{r r} \frac{\mathrm{~d} r}{\mathrm{~d} \tau}\right]=\frac{1}{2} \partial_{r} g_{r r}\left(\frac{\mathrm{~d} r}{\mathrm{~d} \tau}\right)^{2}+\frac{1}{2} \partial_{r} g_{t t}\left(\frac{\mathrm{~d} t}{\mathrm{~d} \tau}\right)^{2}
$$

which simplifies to

$$
\frac{\mathrm{d}^{2} r}{\mathrm{~d} \tau^{2}}=-\frac{G M}{r^{2}}
$$

It looks like Newton, but r is not really the distance from the origin, and τ is the proper time measured along the trajectory.

Solving the Radial Infall Equation

is The proper time τ needed to reach radial variable r is

$$
\tau(r)=\sqrt{\frac{r_{0}}{2 G M}}\left\{r_{0} \tan ^{-1}\left(\sqrt{\frac{r_{0}-r}{r}}\right)+\sqrt{r\left(r_{0}-r\right)}\right\}
$$

The infalling object will be ripped apart by the singularity at $r=0$ in a finite amount of the object's proper time.
is But from the outside, it will take an infinite amount of coordinate time t before the object reaches the horizon.

