8.286 Lecture 16
 November 5, 2013

BLACK-BODY RADIATION AND

 THE EARLY HISTORY

 THE EARLY HISTORY
 OF THE UNIVERSE, PART 2

Summary of Lecture 15: Relativistic Energy

$$
E=m c^{2}
$$

The conversion of $1 \mathrm{~kg} /$ hour would supply 1.5 times the world power production (for 2011).

A 15-gallon tank of gasoline could power the world for $21 / 2$ days.
But: when U-235 undergoes fission, only about 0.09% of mass is converted to energy.

Summary of Lecture 15: Relativistic Four-Momentum

$$
p^{0}=\frac{E}{c}, p^{\mu}=\left(\frac{E}{c}, \vec{p}\right)
$$

p^{μ} transforms from one inertial frame to another in the same way as $x^{\mu}=(c t, \vec{x})$.

$$
\vec{p}=\gamma m_{0} \vec{v}, \quad E=\gamma m_{0} c^{2}=\sqrt{\left(m_{0} c^{2}\right)^{2}+|\vec{p}|^{2} c^{2}}
$$

where

$$
\gamma=\frac{1}{\sqrt{1-\frac{v^{2}}{c^{2}}}}
$$

Lorentz-invariant square of p^{μ} :

$$
p^{2} \equiv|\vec{p}|^{2}-\left(p^{0}\right)^{2}=|\vec{p}|^{2}-\frac{E^{2}}{c^{2}}=-\left(m_{0} c\right)^{2} .
$$

The Hydrogen Atom:

$$
m_{H}=m_{p}+m_{e}-\Delta E / c^{2}
$$

where m_{H}, m_{p}, and m_{e} are the masses of the hydrogen atom, the proton, and the electron, and $\Delta E=13.6 \mathrm{eV}$ is the binding energy.

Alan Guth

Summary of Lecture 15: The Mass of Radiation

$$
\rho=u / c^{2}
$$

where $\rho=$ mass density, $u=$ energy density.
The photon has zero rest mass:

$$
|\vec{p}|^{2}-\frac{E^{2}}{c^{2}}=0, \quad \text { or } \quad E=c|\vec{p}|
$$

Summary of Lecture 15: Radiation in an Expanding Universe

Redshift:

$$
n_{\gamma} \propto \frac{1}{a^{3}(t)}, E_{\gamma} \propto \frac{1}{a(t)} \quad \Longrightarrow \quad \rho_{\gamma}=\frac{u_{\gamma}}{c^{2}} \propto \frac{1}{a^{4}(t)}
$$

Radiation-Dominated Era:

$$
u_{r}=7.01 \times 10^{-14} \mathrm{~J} / \mathrm{m}^{3} \quad \Longrightarrow \quad \frac{\rho_{r, 0}}{\rho_{m, 0}} \approx 3.1 \times 10^{-4}
$$

$$
\frac{\rho_{r}(t)}{\rho_{m}(t)}=\frac{a\left(t_{0}\right)}{a(t)} \times 3.1 \times 10^{-4}
$$

$$
\frac{\rho_{r}\left(t_{\mathrm{eq}}\right)}{\rho_{m}\left(t_{\mathrm{eq}}\right)} \equiv 1 \quad \Longrightarrow \quad \frac{a\left(t_{0}\right)}{a\left(t_{\mathrm{eq}}\right)}=\frac{1}{3.1 \times 10^{-4}} \approx 3200
$$

Assuming that $a(t) \propto t^{2 / 3}$ from $t_{\text {eq }}$ until t_{0} (crude approximation), find $t_{\mathrm{eq}}=\left(3.1 \times 10^{-4}\right)^{3 / 2} t_{0} \approx 75,000 \mathrm{yr}$, for $t_{0}=13.8 \mathrm{Gyr}$.

Summary of Lecture 15: Modification of the Friedmann Equations

$$
\rho \propto \frac{1}{a^{3}} \Longrightarrow \dot{\rho}=-3 \frac{\dot{a}}{a} \rho, \quad \rho(t) \propto \frac{1}{a^{4}(t)} \Longrightarrow \dot{\rho}=-4 \frac{\dot{a}}{a} \rho
$$

$\dot{\rho}$ and pressure p :

$$
\begin{gathered}
d U=-p d V \quad \Longrightarrow \quad \frac{d}{d t}\left(a^{3} \rho c^{2}\right)=-p \frac{d}{d t}\left(a^{3}\right) \\
\Longrightarrow \quad \dot{\rho}=-3 \frac{\dot{a}}{a}\left(\rho+\frac{p}{c^{2}}\right)
\end{gathered}
$$

Alan Gut
Massachusetts Institute of Technology
8.286 Lecture 16, November 5

Friedmann equations:

$$
\begin{aligned}
\left(\frac{\dot{a}}{a}\right)^{2} & =\frac{8 \pi}{3} G \rho-\frac{k c^{2}}{a^{2}} \\
\ddot{a} & =-\frac{4 \pi}{3} G \rho a \\
\dot{\rho} & =-3 \frac{\dot{a}}{a} \rho
\end{aligned}
$$

Becomes inconsistent if

$$
\dot{\rho}=-3 \frac{\dot{a}}{a}\left(\rho+\frac{p}{c^{2}}\right)
$$

Solution:

$$
\ddot{a}=-\frac{4 \pi}{3} G\left(\rho+\frac{3 p}{c^{2}}\right) a .
$$

