8.286 Lecture 9 October 10, 2018

DYNAMICS OF HOMOGENEOUS EXPANSION, PART IV

Age of a Flat Matter-Dominated Universe:

$$a(t) \propto t^{2/3} \implies t = \frac{2}{3}H^{-1}$$

For $H = 67.7 \pm 0.5$ km-s⁻¹-Mpc⁻¹, age = 9.56 - 9.70 billion years — but stars are older. Conclusion: our universe is nearly flat, but not matter-dominated.

Age of a Flat Matter-Dominated Universe:

$$a(t) \propto t^{2/3} \implies t = \frac{2}{3}H^{-1}$$

For $H = 67.7 \pm 0.5$ km-s⁻¹-Mpc⁻¹, age = 9.56 - 9.70 billion years — but stars are older. Conclusion: our universe is nearly flat, but not matter-dominated.

The Big Bang Singularity: a(0) = 0, with infinite density, is a feature of our model, but not necessarily the real universe.

Horizon Distance: the present distance of the furthest particles from which light has had time to reach us.

$$\ell_{\rm phys,horizon}(t) = a(t) \int_0^t \frac{c}{a(t')} dt'$$
.

 $a(t) \propto t^{2/3} \implies \ell_{\text{phys,horizon}} = 3ct = 2cH^{-1}$.

Equations for a Matter-Dominated Universe

("Matter-dominated" = dominated by nonrelativistic matter.)

Friedmann equations:

$$\left(\frac{\dot{a}}{a}\right)^2 = \frac{8\pi}{3}G\rho - \frac{kc^2}{a^2} ,$$
$$\ddot{a} = -\frac{4\pi}{3}G\rho(t)a .$$

Matter conservation:

$$\rho(t) \propto \frac{1}{a^3(t)}, \text{ or } \rho(t) = \left[\frac{a(t_1)}{a(t)}\right]^3 \rho(t_1) \text{ for any } t_1.$$

Any two of the above equations can allow us to find the third.

$$\left(\frac{\dot{a}}{a}\right)^2 = \frac{8\pi}{3}G\rho - \frac{kc^2}{a^2} , \quad \rho(t)a^3(t) = \text{constant} , \ k > 0 .$$

Recall $[a(t)] = \text{meter/notch}, [k] = 1/\text{notch}^2.$

Define new variables:

$$\tilde{a}(t) \equiv \frac{a(t)}{\sqrt{k}}$$
, $\tilde{t} \equiv ct$ (both with units of distance)

Multiplying Friedmann eq by $a^2/(kc^2)$:

$$\frac{1}{kc^2} \left(\frac{da}{dt}\right)^2 = \frac{8\pi}{3} \frac{G\rho a^2}{kc^2} - 1 \ .$$

$$\frac{1}{kc^2} \left(\frac{da}{dt}\right)^2 = \frac{8\pi}{3} \frac{G\rho a^2}{kc^2} - 1$$

$$= \frac{8\pi}{3} \frac{G\rho a^3}{k^{3/2}c^2} \frac{\sqrt{k}}{a} - 1 .$$
(4.15)

Rewrite as

$$\left(\frac{d\tilde{a}}{d\tilde{t}}\right)^2 = \frac{2\alpha}{\tilde{a}} - 1 \; ,$$

where

$$\alpha \equiv \frac{4\pi}{3} \frac{G\rho \tilde{a}^3}{c^2} \ .$$

 $[\alpha] =$ meter. α is constant, since ρa^2 is constant.

$$\left(\frac{d\tilde{a}}{d\tilde{t}}\right)^2 = \frac{2\alpha}{\tilde{a}} - 1 \quad \Longrightarrow \quad d\tilde{t} = \frac{\tilde{a}\,d\tilde{a}}{\sqrt{2\alpha\tilde{a} - \tilde{a}^2}}$$

Then

$$\tilde{t}_f = \int_0^{\tilde{t}_f} d\tilde{t} = \int_0^{\tilde{a}_f} \frac{\tilde{a} d\tilde{a}}{\sqrt{2\alpha\tilde{a} - \tilde{a}^2}} ,$$

where \tilde{t}_f is an arbitrary choice for a "final time" for the calculation, and \tilde{a}_f is the value of \tilde{a} at time \tilde{t}_f .

$$ct = \alpha(\theta - \sin \theta) ,$$
$$\frac{a}{\sqrt{k}} = \alpha(1 - \cos \theta) .$$

$$ct = \alpha(\theta - \sin \theta) ,$$
$$\frac{a}{\sqrt{k}} = \alpha(1 - \cos \theta) .$$

9

Alan Guth Massachusetts Institute of Technology 8.286 Lecture 9, October 10, 2018

$$ct = \alpha(\theta - \sin \theta) ,$$
$$\frac{a}{\sqrt{k}} = \alpha(1 - \cos \theta) .$$

$$t = \frac{\Omega}{2|H|(\Omega-1)^{3/2}} \left\{ \arcsin\left(\pm \frac{2\sqrt{\Omega-1}}{\Omega}\right) \mp \frac{2\sqrt{\Omega-1}}{\Omega} \right\} .$$

$$t = \frac{\Omega}{2|H|(\Omega-1)^{3/2}} \left\{ \arcsin\left(\pm \frac{2\sqrt{\Omega-1}}{\Omega}\right) \mp \frac{2\sqrt{\Omega-1}}{\Omega} \right\} .$$

Quadrant	Phase	Ω	Sign Choice	$\sin^{-1}()$
1	Expanding	1 to 2	Upper	0 to $\frac{\pi}{2}$
2	Expanding	$2 ext{ to } \infty$	Upper	$\frac{\pi}{2}$ to π
3	Contracting	∞ to 2	Lower	π to $\frac{3\pi}{2}$
4	Contracting	2 to 1	Lower	$\frac{3\pi}{2}$ to 2π

-11-

