

Equivalent Statements of the 5th Postulate

(b) "There is one and only one line that passes through any given point and is parallel to a given line."
|llit

Equivalent Statements of the 5th Postulate

(d) "There is a triangle in which the sum of the three angles is equal to two right angles (i.e., 180°)."

Equivalent Statements of the 5th Postulate

| (a) | (b) |
| :--- | :--- | :--- |
| (c) | |

(c) "Given any figure there exists a figure, similar to it, of any size." (Two polygons are similar if their corresponding angles are equal, and their corresponding sides are proportional.)

Giovanni Geralamo Saccheri (1667-1733)

EUCLIDES
ab OMNI NeVO VINDICATUS:
CONATUS GEOMETRICUS
QUo stabiliuntur
Prima ipla univerfz Geomerrix Principia. $A \cup C T O R E$
HIER ONYMO SACCHERIO SOCIETATIS JESU
In Ticinenfi Univerfitate Mathefoos Profeffore. OPUSCULUM EX ${ }^{\text {mo }}$ SENATUI MEDIOLANENSI
ab Auctore Dicatum.

Carl Friedrich Gauss (1777-1855)

IIIT

German mathematician and physicist
Born as the son of a poor working-class parents. His mother was illiterate and never even recorded the date of his birth.

His students included Richard Dedekind, Bernhard Riemann, Peter Gustav Lejeune Dirichlet, Gustav Kirchhoff, and August Ferinand Möbius.

Nikolai Ivanovich Lobachevsky (1792-1856)

Russian mathematician and college teacher
Born in Russia from Polish parents; father was a clerk in a land-surveying office, but died when Nikolai was only seven.
Moved to Kazan, attending Kazan Gymnasium and later was given a scholarship to Kazan University. He remained at Kazan University on the faculty.
Work on non-Euclidean geometry published in the Kazan Messenger in 1829, but was rejected for publication by the St. Petersburg Academy of Sciences.
He was "asked to retire" at age 54, and died 10 years later in poor health and in poverty. His work was never appreciated during his lifetime.

János Bolyai (1802-1860)

Hungarian mathematician and army officer.
Son of Farkas Bolyai, a teacher of mathematics, physics, and chemistry at the Calvinist College in Marosvásárhely, Hungary.
Attended Marosvásárhely College and later studied military engineering at the Academy of Engineering at Vienna, because that is what his family could afford.
Served 11 years in the army engineering corps; during this time he developed his nonEuclidean geometry, which was published as an appendix to a book written by his father.
Retired from the army at age 31 due to poor health, and died in relative poverty at age 57, from pneumonia.

GBL geometry with Klein

$\left(x_{1}, y_{1}\right)$

$$
\left(x_{2}, y_{2}\right)^{\circ}
$$

I. constant negative curvature
2. infinite
3. 5th postulate
$x^{2}+y^{2}<1$
$d(1,2)=a \cosh ^{-1}\left[\frac{1-x_{1} x_{2}-y_{1} y_{2}}{\sqrt{1-x_{1}^{2}-y_{1}^{2}} \sqrt{1-x_{2}^{2}-y_{2}^{2}}}\right]$

Note: no global embedding in 3D Euclidean space possible

Geometry (after Klein)

Alan Guth, Introduction to Non-Euclidean Spaces, 8.286 Lecture 10, October 15, 2018, p. 10.

Implications of General Relativity

is $d s^{2}=R^{2}\left[d \psi^{2}+\sin ^{2} \psi\left(d \theta^{2}+\sin ^{2} \theta d \phi^{2}\right)\right]$, where R is radius of curvature.
According to GR, matter causes space to curve.
is R cannot be arbitrary. Instead, $R^{2}(t)=\frac{a^{2}(t)}{k}$.
is Finally,

$$
\mathrm{d} s^{2}=a^{2}(t)\left\{\frac{\mathrm{d} r^{2}}{1-k r^{2}}+r^{2}\left(\mathrm{~d} \theta^{2}+\sin ^{2} \theta \mathrm{~d} \phi^{2}\right)\right\}
$$

where $r=\frac{\sin \psi}{\sqrt{k}}$. Called the Robertson-Walker metric.

