
Alan Guth, Non-Euclidean Spaces: The Geodesic Equation, 8.286 Lecture 12, October 22, 2018, p. 1.

8.286 Lecture 12

October 22, 2018

NON-EUCLIDEAN SPACES:

THE GEODESIC EQUATION

Metrics of Interest

Minkowski Metric: (Special relativity)

ds2 = −c2dt2 + dx2 + dy2 + dz2

= −c2dt2 + dr2 + r2(dθ2 + sin2 θ dφ2) .

Robertson{Walker Metric:

ds2 = −c2 dt2 + a2(t)
{

dr2

1− kr2
+ r2

(
dθ2 + sin2 θ dφ2

)}
.

Meaning: If ds2 > 0, ds is distance in freely falling frame in which events

are simultaneous. If ds2 < 0, ds2 = −c2dτ 2, where dτ is time interval in freely
falling frame in which events occur at same point. If ds2 = 0, events are lightlike
separated.
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Geodesics in General Relativity

A geodesic is a path connecting two points in spacetime, with the
property that the length of the curve is stationary with respect
to small changes in the path. It can be a maximum, minimum,
or saddle point.

In a curved spacetime, a geodesic is the closest thing to a straight
line that exists.

In general relativity, if no forces act on a particle other than
gravity, the particle travels on a geodesic.
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Geodesics in Two Spatial Dimensions

Metric:
ds2 = gxxdx2 + gxydx dy + gyxdy dx+ gyydy2 .

Let x1 ≡ x, x2 ≡ y, so xi is either, as i = 1 or 2.

ds2 =
2∑

i=1

2∑
j=1

gij(xk) dxi dxj

= gij(xk) dxi dxj .

Einstein summation convention: repeated indices within one term are summed
over coordinate indices (1 and 2), unless otherwise specified.

The sum is always over one upper index and one lower, but we will not discuss
why some indices are written as upper and some as lower.
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The Length of Path

Consider a path from A to B.
Path description: xi(λ), where λ is parameter running from 0 to λf .

xi(0) = xi
A, xi(λf ) = xi

B .

Between λ and λ+ dλ,

dxi =
dxi

dλ
dλ ,

so

ds2 = gij

(
xk(λ)

) dxi

dλ
dxj

dλ
dλ2 ,

and then

ds =

√
gij

(
xk(λ)

) dxi

dλ
dxj

dλ
dλ ,

and

S[xi(λ)] =
∫ λf

0

√
gij

(
xk(λ)

) dxi

dλ
dxj

dλ
dλ .
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Varying the Path

x̃i(λ) = xi(λ) + αwi(λ) ,
where

wi(0) = 0 , wi(λf ) = 0 .
Geodesic condition:

dS
[
x̃i(λ)

]
dα

∣∣∣∣∣
α=0

= 0 for all wi(λ) .
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Define

A(λ, α) = gij

(
x̃k(λ)

) dx̃i

dλ
dx̃j

dλ
,

so we can write

S
[
x̃i(λ)

]
=
∫ λf

0

√
gij

(
xk(λ)

) dxi

dλ
dxj

dλ
dλ

=
∫ λf

0

√
A(λ, α) dλ .

Using chain rule,

d
dα

gij

(
x̃k(λ)

)∣∣∣∣
α=0

=
∂gij

∂xk

∣∣∣∣
xk=xk(λ)

∂x̃k

∂α

∣∣∣∣
α=0

=
∂gij

∂xk

(
xi(λ)

)
wk ,

and
d
dα

(
∂x̃i

∂λ

)
=
d
dα

[
∂xi(λ)
∂λ

+ α
∂wi(λ)
∂λ

]
=
∂wi(λ)
∂λ

.
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S
[
x̃i(λ)

]
=
∫ λf

0

√
A(λ, α) dλ ,

where

A(λ, α) = gij

(
x̃k(λ)

) dx̃i

dλ
dx̃j

dλ
,

with

d
dα

gij

(
x̃k(λ)

)∣∣∣∣
α=0

=
∂gij

∂xk

(
xi(λ)

)
wk ,

d
dα

(
∂x̃i

∂λ

)
=
∂wi(λ)
∂λ

.

Then
dS
[
x̃i(λ)

]
dα

∣∣∣∣∣
α=0

=
1
2

∫ λf

0

1√
A(λ, 0)

{
∂gij

∂xk
wk dx

i

dλ
dxj

dλ
+

+gij
dwi

dλ
dxj

dλ
+ gij

dxi

dλ
dwj

dλ

}
dλ ,

where the metric gij is to be evaluated at xk(λ).
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dS
[
x̃i(λ)

]
dα

∣∣∣∣∣
α=0

=
1
2

∫ λf

0

1√
A(λ, 0)

{
∂gij

∂xk
wk dx

i

dλ
dxj

dλ
+

+gij
dwi

dλ
dxj

dλ
+ gij

dxi

dλ
dwj

dλ

}
dλ .

Manipulating \dummy" indices: in third term, replace i → j and j → i, and
recall that gij = gji. Then 2nd & 3rd term are equal:

dS
[
x̃i(λ)

]
dα

∣∣∣∣∣
α=0

=
1
2

∫ λf

0

1√
A(λ, 0)

{
∂gij

∂xk
wk dx

i

dλ
dxj

dλ
+ 2gij

dwi

dλ
dxj

dλ

}
dλ .
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Repeating,

dS
[
x̃i(λ)

]
dα

∣∣∣∣∣
α=0

=
1
2

∫ λf

0

1√
A(λ, 0)

{
∂gij

∂xk
wk dx

i

dλ
dxj

dλ
+ 2gij

dwi

dλ
dxj

dλ

}
dλ .

Integration by Parts: Integral depends on both wk and dwi/dλ. Can

eliminate dwi/dλ by integrating by parts:

∫ λf

0

[
1√
A
gij
dxj

dλ

]
dwi

dλ
dλ =

∫ λf

0

d
dλ

[
1√
A
gij
dxj

dλ
wi

]
dλ

−
∫ λf

0

d
dλ

[
1√
A
gij
dxj

dλ

]
wi dλ .

But ∫ λf

0

d
dλ

[
1√
A
gij
dxj

dλ
wi

]
dλ =

[
1√
A
gij
dxj

dλ
wi

]∣∣∣∣
λ=λf

λ=0

= 0 ,

since wi(λ) vanishes at λ = 0 and λ = λf .
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So

dS
dα

∣∣∣∣
α=0

=
1
2

∫ λf

0

{
1√
A

∂gij

∂xk

dxi

dλ
dxj

dλ
wk − 2 d

dλ

[
1√
A
gij
dxj

dλ

]
wi

}
dλ .

More index juggling: in 1st term replace i → j, j → k, k → i:

dS
dα

∣∣∣∣
α=0

=
∫ λf

0

{
1

2
√
A

∂gjk

∂xi

dxj

dλ
dxk

dλ
− d
dλ

[
1√
A
gij
dxj

dλ

]}
wi(λ) dλ .

To vanish for all wi(λ) which vanish at λ = 0 and λ = λf , the quantity in
curly brackets must vanish. If not, then suppose that { } �= 0 at some
λ = λ0. By continuity, { } �= 0 in some neighborhood of λ0. Choose wi(λ)
to be positive in this neighborhood, and zero everywhere else, and one has
a contradiction.

So

d
dλ

[
1√
A
gij
dxj

dλ

]
=

1
2
√
A

∂gjk

∂xi

dxj

dλ
dxk

dλ
.

Alan Guth

Massachusetts Institute of Technology

8.286 Lecture 12, October 22, 2018 –10–

Repeating,

d
dλ

[
1√
A
gij
dxj

dλ

]
=

1
2
√
A

∂gjk

∂xi

dxj

dλ
dxk

dλ
.

This is complicated, since A is complicated.

Simplify by choice of parameterization: This result is valid for any parame-
terization. We don’t need that! We can choose λ to be the path length.
Since

ds =

√
gij

(
xk(λ)

)dxi

dλ
dxj

dλ
dλ =

√
Adλ ,

we see that dλ = ds implies
A = 1 (for λ = path length).

Then

d
ds

[
gij
dxj

ds

]
=
1
2
∂gjk

∂xi

dxj

ds
dxk

ds
.
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Alternative Form of Geodesic Equation

Most books write the geodesic equation differently, as

d2xi

ds2
= −Γi

jk

dxj

ds
dxk

ds
,

where

Γi
jk =

1
2
gi� (∂jg�k + ∂kg�j − ∂�gjk)

and gi� is the matrix inverse of gij . The quantity Γi
jk is called the affine

connection.

If you are interested, see the lecture notes. If you are not interested, you can
skip this.
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BLACK HOLES (Fun!)

The Schwarzschild Metric:

For any spherically symmetric distribution of mass, outside the mass the metric
is given by the Schwarzschild metric,

ds2 = −c2dτ 2 = −
(
1− 2GM

rc2

)
c2dt2 +

(
1− 2GM

rc2

)−1

dr2

+ r2dθ2 + r2 sin2 θ dφ2 ,

where M is the total mass, G is Newton’s gravitational constant, c is the
speed of light, and θ and φ have the usual polar-angle ranges.
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Schwarzschild Horizon

ds2 = −c2dτ 2 = −
(
1− 2GM

rc2

)
c2dt2 +

(
1− 2GM

rc2

)−1

dr2

+ r2dθ2 + r2 sin2 θ dφ2 .

The metric is singular at

r = RS ≡ 2GM
c2

,

where the coefficient of c2dt2 vanishes, and the coefficient of dr2 is infinite.

Surprisingly, this singularity is not real — it is a coordinate artifact. There are
other coordinate systems where the metric is smooth at RS .

But RS is a horizon: If you fall past the horizon, there is no return, even if
you are photon.
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Schwarzschild Radius of the Sun

RS,� =
2GM
c2

=
2× 6.673× 10−11 m3-kg−1-s−2 × 1.989× 1030 kg

(2.998× 108 m-s−1)2

= 2.95 km .

If the Sun were compressed to this radius, it would become a black hole. Since
the Sun is much larger than RS , and the Schwarzschild metric is only valid
outside the matter, there is no Schwarzschild horizon in the Sun.
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Radial Geodesics in the Schwarzschild Metric

ds2 = −c2dτ 2 = −
(
1− 2GM

rc2

)
c2dt2 +

(
1− 2GM

rc2

)−1

dr2

+ r2dθ2 + r2 sin2 θ dφ2 .

Consider a particle released from rest at r = r0.

r is a “radial coordinate,” but not the radius, since it is not the distance from
some center. If r is varied by dr, the distance traveled is not dr, but
dr/
√
1− 2GM/rc2. r can be called the “circumferential radius,” since the

term r2(dθ2 + sin2 θ dφ2) in the metric implies that the circumference of a
circle about the origin is 2πr.

By symmetry, the particle will fall straight down, with no change in θ or φ.
Spherical symmetry implies that all directions in θ and φ are equivalent,
so any motion in θ–φ space would violate this symmetry.

Alan Guth

Massachusetts Institute of Technology

8.286 Lecture 12, October 22, 2018 –16–

Particle Trajectories in Spacetime

Particle trajectories are timelike, so we use proper time τ to parameterize them,
where ds2 ≡ −c2dτ 2. This implies that A = −c2, instead of A = 1, but as
long as A is constant, it drops out of the geodesic equation.

By tradition, the spacetime indices in general relativity are denoted by Greek
letters such as µ, ν, λ, σ, and are summed from 0 to 3, where x0 ≡ t.

The geodesic equation

d
ds

[
gij
dxj

ds

]
=
1
2
∂gjk

∂xi

dxj

ds
dxk

ds

is then rewritten as

d
dτ

[
gµν

dxν

dτ

]
=
1
2
∂gλσ

∂xµ

dxλ

dτ
dxσ

dτ
.
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Radial Trajectory Equations

Only dr/dτ and dt/dτ are nonzero. But they are related by the metric:

c2dτ 2 =
(
1− 2GM

rc2

)
c2 dt2 −

(
1− 2GM

rc2

)−1

dr2

implies that

c2 =
(
1− 2GM

rc2

)
c2
(
dt
dτ

)2

−
(
1− 2GM

rc2

)−1 (dr
dτ

)2

.

Then, looking at the µ = r geodesic equation,
d
dτ

[
gµν

dxν

dτ

]
=
1
2
∂gλσ

∂xµ

dxλ

dτ
dxσ

dτ
implies that

d
dτ

[
grr
dr
dτ

]
=
1
2
∂rgrr

(
dr
dτ

)2

+
1
2
∂rgtt

(
dt
dτ

)2

,

where

grr =
(
1− 2GM

rc2

)−1

, gtt = −c2
(
1− 2GM

rc2

)
.
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Repeating,

c2 =
(
1− 2GM

rc2

)
c2
(
dt
dτ

)2

−
(
1− 2GM

rc2

)−1 (dr
dτ

)2

.

d
dτ

[
grr
dr
dτ

]
=
1
2
∂rgrr

(
dr
dτ

)2

+
1
2
∂rgtt

(
dt
dτ

)2

,

where

grr =
(
1− 2GM

rc2

)−1

, gtt = −c2
(
1− 2GM

rc2

)
.

Expand
d
dτ

[
grr
dr
dτ

]
with the product rule, replace (dt/dτ )2 using the equation above, and simplify.
Result:

d2r

dτ 2
= −GM

r2
,

which looks just like Newton, but it is not really the same. Here τ is the proper
time as measured by the infalling object, and r is not the radial distance.
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Solving the Equation

d2r

dτ 2
= −GM

r2
.

Like Newton’s equation, multiply by dr/dτ , and it can then be written as

d
dτ

{
1
2

(
dr
dτ

)2

− GM

r

}
= 0 .

Quantity in curly brackets is conserved. Initial value (on release from rest at
r0) is −GM/r0, so it always has this value. Then

dr
dτ
= −

√
2GM

(
1
r
− 1
r0

)
= −

√
2GM(r0 − r)

rr0
.
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Repeating,

dr
dτ
= −

√
2GM

(
1
r
− 1
r0

)
= −

√
2GM(r0 − r)

rr0
.

Bring all r-dependent factors to one side, and bring dτ to the other side, and
integrate:

τ (rf ) = −
∫ rf

r0

dr
√

rr0
2GM(r0 − r)

=
√

r0
2GM

{
r0 tan−1

(√
r0 − rf

rf

)
+
√
rf (r0 − rf )

}
.

Conclusion: object will reach r = 0 in a finite proper time τ .
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But Coordinate Time t is Different!

dr
dt
=
dr
dτ
dτ
dt
=
dr/dτ
dt/dτ

=
dr/dτ√

h−1(r) + c−2h−2(r)
(

dr
dτ

)2 ,

where
h(r) ≡ 1− RS

r
= 1− 2GM

rc2
.

Look at behavior near horizon; h−1(r) blows up:

h−1(r) =
r

r −RS
≈ RS

r − RS
.

Denominator is dominated by 2nd term, which gives

dr
dt

≈ c

(
r − RS

RS

)
.
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Repeating,
dr
dt

≈ c

(
r − RS

RS

)
.

Rearranging and integrating to some final r = rf , one finds

t(rf ) ≈ −RS

c

∫ rf dr′

r′ − RS
≈ −RS

c
ln(rf −RS) .

Thus t diverges logarithmically as rf → RS , so the object does not reach RS

for any finite value of t.
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