8.286 Lecture 21 November 28, 2018

GRAND UNIFIED THEORIES AND THE MAGNETIC MONOPOLE PROBLEM

The Standard Model of Particle Physics

mass \rightarrow charge \rightarrow spin \rightarrow	^{2/3}	≈1.275 GeV/c ² 2/3 1/2	≈173.07 GeV/c² 2/3 1/2	0 0 1 g	≈126 GeV/c² 0 0
	up	charm	top	gluon	Higgs boson
QUARKS	≈4.8 MeV/c ² -1/3 1/2 down	*95 MeV/c ² -1/3 S 1/2 S strange	*4.18 GeV/c ² -1/3 1/2 bottom	0 1 photon	
	0.511 MeV/c ² -1 1/2 electron	105.7 MeV/c ² -1 1/2 muon	1.777 GeV/c ² -1 1/2 tau	91.2 GeV/c ² 0 1 Z boson	BOSONS
LEPTONS	<2.2 eV/c ² 0 1/2 electron neutrino	<0.17 MeV/c ² 0 1/2 muon neutrino	<15.5 MeV/c ² 0 1/2 tau neutrino	80.4 GeV/c ² ±1 1 W boson	GAUGE BO

Wikimedia Commons. Source: PBS NOVA, Fermilab, Office of Science, United States Department of Energy, Particle Data Group.

