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Summary of Lecture 21

Gauge Theories: Electromagnetic Example

Fields and potentials: �E = −�∇φ− 1
c

∂ �A
∂t ,

�B = �∇× �A .

Four-vector notation: Aµ = (−φ,Ai) .

Gauge transformations:

φ′(t, �x) = φ(t, �x)− 1
c

∂Λ(t, �x)
∂t

, �A′(t, �x) = �A(t, �x) + �∇Λ(t, �x) ,

or in four-vector notation,

A′
µ(x) = Aµ(x) +

∂Λ
∂xµ

, where x ≡ (t, �x).

�E and �B are gauge-invariant, soAµ and A′
µ both satisfy the equations of motion,

and describe the SAME physical situation.

Gauge transformations can be combined, forming a group:

Λ3(x) = Λ1(x) + Λ2(x) .

Gauge symmetry ≡ local symmetry [Λ ≡ Λ(x)].
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Summary of Lecture 21

Electromagnetism as a U(1) Gauge Theory

Λ(x) is an element of the real numbers.

But if we included an electron field ψ(x), it would transform as

ψ′(x) = eie0Λ(x)ψ(x) ,

where e0 is the charge of a proton and e = 2.71828 . . .. So we might think
of u(x) ≡ eie0Λ(x) as describing the gauge transformation. u contains LESS
information than Λ, since it defines Λ only mod 2π/e0.

But u is enough to define the gauge transformation, since

∂Λ
∂xµ

=
1
ie0
e−ie0Λ(x) ∂

∂xµ
eie0Λ(x) .

u is an element of the group U(1), the group of complex phases u = eiχ, where
χ is real. So E&M is a U(1) gauge theory.
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Summary of Lecture 21

Gauge Groups of the Standard Model

U(1) is abelian (commutative), but Yang and Mills showed in 1954 how to
construct a nonabelian gauge theory. The standard model contains the
following gauge symmetries:

SU(3): This is the group of 3× 3 complex matrices that are

S ≡ Special: they have determinant 1.

U ≡ Unitary: they obey u†u = 1, which means that when they multiply a
1× 3 column vector v, they preserve the norm |v| ≡ √

v∗i vi.

SU(2): The group of 2× 2 complex matrices that are special (S) and unitary
(U). As you may have learned in quantum mechanics, SU(2) is almost the
same as the rotation group in 3D, with a 2:1 group-preserving mapping
between SU(2) and the rotation group.

U(1): The group of complex phases. The U(1) of the standard model is not
the U(1) of E&M; instead U(1)E&M is a linear combination of the U(1) of
the standard model and a rotation about one fixed direction in SU(2).

Alan Guth

Massachusetts Institute of Technology

8.286 Lecture 22, December 3, 2018 –4–

Summary of Lecture 21

Combining the groups: the gauge symmetry group of the standard model is
usually described as SU(3)×SU(2)×U(1). An element of this group is
an ordered triplet (u3, u2, u1), where u3 ∈ SU(3), u2 ∈ SU(2), and u1 ∈
U(1), so SU(3)×SU(2)×U(1) is really no different from thinking of the 3
symmetries separately.

SU(3) describes the strong interactions, and SU(2)×U(1) together describe the
electromagnetic and weak interactions in a unified way, call the electroweak
interactions.

SU(3) acts on the quark fields by rotating the 3 “colors” into each other. Thus
the strong interactions of the quarks are entirely due to their “colors”,
which act like charges.
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Summary of Lecture 21

The Higgs Field and

Spontaneous Symmetry Breaking

The Higgs field is a complex doublet:

H(x) ≡
 h1(x)
h2(x)

 .

Under SU(2) transformations, H ′(x) = u2(x)H(x), where u2(x) is the
complex 2 × 2 matrix that defines the SU(2) gauge transformation at
x. Since the gauge symmetry implies that the potential energy density
of the Higgs field V (H) must be gauge-invariant, V can depend only on
|H | ≡ √|h1|2 + |h2|2, which is unchanged by SU(2) transformations.
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Summary of Lecture 21

Potential energy function V (|H |):

The minimum is not at |H | = 0, but instead at |H | = Hv.

|H | = 0 is SU(2) gauge-invariant, but |H | = Hv is not. H randomly picks out
some direction in the space of 2D complex vectors.

Spontaneous Symmetry Breaking: Whenever the ground state of a system
has less symmetry than the underlying laws, it is called spontaneous
symmetry breaking. Examples: crystals, ferromagnetism.
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Summary of Lecture 21

Higgs Fields Give Mass to Other Particles

When H = 0, all the fundamental particles of the standard model are massless.
(Protons, however, are not massless.) Furthermore, there is no distinction
between the electron e and the electron neutrino νe, or between µ and νµ,
or between τ and ντ .

For |H | �= 0, H randomly picks out a direction in space of 2D complex vectors.
Since all directions are otherwise equivalent, we can assume that in the
vacuum,

H =
Hv

0

 .

Components of other fields that interact with Re(h1) then start to behave
differently from fields that interact with other components of H .
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Summary of Lecture 21

Mass: mc2 of a particle is the state of lowest energy above the ground state.
In a field theory, this corresponds to a homogeneous oscillation of the field,
which in turn corrsponds to a particle with zero momentum.

In the free field limit, the field acts exactly like a harmonic oscillator. The first
excited state has energy hν = h̄ω above the ground state. So, mc2 = h̄ω.

ω is determined by inertia and the restoring force. When H = 0, the standard
model interactions provide no restoring forces. Any such restoring force
would break gauge invariance.

When H =
Hv

0

, the interactions with H creates a restoring force for some

components of other fields, giving them a mass. This “Higgs mechanism”
creates the distinction between electrons and neutrinos.
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Beyond the Standard Model

With neutrino masses added, the standard model is spectacularly successful: it
agrees with all reliable particle experiments.

Nonetheless, most physicists regard it as incomplete, for at least two types of
reasons:

1) It does not include gravity, and it does not include any particle to
account for the dark matter. (Maybe black holes can do it, but that
requires a mass distribution that we cannot explain.)

2) The theory appears too inelegant the final theory. It contains more
arbitrary features and free parameters than one would hope for in
a final theory. Why SU(3)×SU(2)×U(1)? Why three generations
of fermions? The original theory had 19 free parameters, with more
needed for neutrino masses and even more if supersymmetry is added.

Result: BSM (Beyond the Standard Model) particle physics has become a major
industry.
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Grand Unified Theories

Goal: Unify SU(3)×SU(2)×U(1) by embedding all three into a single, larger
group.

The breaking of the symmetry to SU(3)×SU(2)×U(1) is accomplished by
introducing new Higgs fields to spontaneously break the symmetry.

In the fundamental theory, before spontaneous symmetry breaking, there is no
distinction between an electron, an electron neutrino, or an up or down
quark.
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The SU(5) Grand Unified Theory

In 1974, Howard Georgi and Sheldon Glashow of Harvard proposed the
original grand unified theory, based on SU(5). They pointed out that
SU(3)×SU(2)×U(1) fits elegantly into SU(5).

To start, let the SU(3) subgroup be matrices of the form

u3 =



x x x 0 0
x x x 0 0
x x x 0 0
0 0 0 1 0
0 0 0 0 1


,

where the 3× 3 block of x’s represents an arbitrary SU(3) matrix.
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Similarly let the SU(2) subgroup be matrices of the form

u2 =



1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 x x
0 0 0 x x


,

where this time the 2×2 block of x’s represents an arbitrary SU(2) matrix.

Note that u3 and u2 commute, since each acts like the identity matrix in the
space in which the other is nontrivial.

Finally, the U(1) subgroup can be written as

u1 =



e2iθ 0 0 0 0
0 e2iθ 0 0 0
0 0 e2iθ 0 0
0 0 0 e−3iθ 0
0 0 0 0 e−3iθ


,

where the factors of 2 and 3 in the exponents were chosen so that the
determinant — in this case the product of the diagonal entries — is equal
to 1.
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Repeating, the U(1) subgroup can be written as

u1 =



e2iθ 0 0 0 0
0 e2iθ 0 0 0
0 0 e2iθ 0 0
0 0 0 e−3iθ 0
0 0 0 0 e−3iθ


.

u1 commutes with any matrix of the form of u2 or u3, since within either the
upper 3× 3 block or within the lower 2× 2 block, u1 is proportional to the
identity matrix.

Thus, any element (u3, u2, u1) of SU(3)×SU(2)×U(1) can be written as an
element u5 of SU(5), just by setting u5 = u3u2u1.
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How Can Three Different Types

of Interaction Look Like One?

In the standard model, each type of gauge interaction — SU(3), SU(2), and
U(1) — has its own interaction strength, described by “coupling constants”
g3, g2, and g1. Their values of are different from each other! How can they
be one interaction?

BUT: the interaction strength varies with energy in a calculable way. When the
calculations are extended to superhigh energies, of the order of 1016 GeV,
the three interaction strengths become about equal!
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Running Coupling Constants

The top graph shows the running of cou-
pling constants in the standard model,
showing that the three coupling constants
do not quite meet. The bottom graph
shows the running of coupling constants in
the MSSM — the Minimal Supersymmetric
Standard Model, in which the meeting of
the couplings is almost perfect. αi = g2i /4π.

Source: Particle Data Group 2016 Review of Particle Physics,
Chapter 16, Grand Unified Theories, Revised January 2016 by
A. Hebecker and J. Hisano.
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Running Couplings

Minimal Supersymmetric Standard Model
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Bottom line: An SU(5) grand unified theory can be constructed by introducing
a Higgs field that breaks the SU(5) symmetry to SU(3)×SU(2)×U(1) at an
energy of about 1016 GeV. At energies above 1016 GeV, the theory behaves
like a fully unified SU(5) gauge theory. At lower energies, it behaves like
the standard model. The gauge particles that are part of SU(5) but not
part of SU(3)×SU(2)×U(1) acquire masses of order 1016 GeV.

GUTs (Grand Unified Theories) allow two unique phenomena at low energies,
neither of which have been seen:

1) Proton decay. The superheavy gauge particles can mediate proton
decay. The minimal SU(5) model — with the simplest conceivable
particle content — predicts a proton lifetime of about 1031 years, which
is ruled out by experiments, which imply a lifetime >∼ 1034 years.

2) Magnetic monopoles. All grand unified theories imply that magnetic
monopoles should be a possible kind of particle. None have been seen.

The absence of evidence does not imply that GUTs are wrong, but we don’t
know.
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The Grand Unified Theory Phase Transition

When kT 	 1016 GeV, the Higgs fields of the GUT undergo large fluctuations,
and average to zero. The GUT symmetry is unbroken, and the theory
behaves as an SU(5) gauge theory.

As kT falls to about 1016 GeV, the matter filling the universe would go through
a phase transition, in which some of the components of the GUT Higgs
field acquire nonzero values in the thermal equilibrium state, breaking the
GUT symmetry. The breaking to SU(3)×SU(2)×U(1) might occur in one
phase transition, or in a series of phase transitions. We’ll assume a single
phase transition.

The Higgs fields start to randomly acquire nonzero values, but the nonzero
values that form in one region may not align with those in another.

The expression for the energy density contains a term proportional to |∇Φ|2,
so the fields tend to fall into low energy states with small gradients.
But sometimes the fields in one region acquire a pattern that cannot be
smoothly joined with the pattern in a neighboring region, so the smoothing
is imperfect, leaving “defects”.
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Topological Defects

There are three types of defects:

1) Domain walls. For example, imagine a single real scalar field φ for which
the potential energy function has two local minima, at φ1 and φ2. Then,
as the system cools, some regions will have φ ≈ φ1 and others will have
φ ≈ φ2. The boundaries between these regions will be surfaces of high
energy density: domain walls. Some GUTS allow domain walls, others do
not. The energy density of a domain wall is so high that none can exist in
the visible universe.

2) Cosmic strings. Linelike defects, which exist in some GUTs but not all.

3) Magnetic monopoles: Pointlike defects, which exist in all GUTs.
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Magnetic Monopoles

We’ll consider the simplest theory in which monopoles arise. It has a
3-component (real) Higgs field, φa, where a = 1, 2 or 3. Gauge symmetry
acting on φa has the same mathematical form as the rotations of an
ordinary Cartesian 3-vector.

To be gauge-invariant, the energy density function can depend only on

|φ| ≡
√
φ2

1 + φ
2
2 + φ

2
3 ,

and we assume that it looks qualitatively like the graph for the standard
model, with a minimum at Hv.
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Now consider the following static configuration,

φa(�r ) = f(r)r̂a ,

where r ≡ |�r |, r̂a denotes the a-component of the unit vector r̂ = �r/r,
and f(r) is a function which vanishes when r = 0 and approaches Hv as
r → ∞.

Pictorially,

where the 3 components of the arrow at each point describe the 3 Higgs field
components.
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Repeating,

where the 3 components of the arrow at each point describe the 3 Higgs field
components.

The directions in gauge space φa really have nothing to do with directions in
physical space, but there is nothing that prevents the fields from existing
in this configuration.

The configuration is topologically stable in the following sense: if the boundary
conditions at infinity are fixed, and the fields are continuous, then there is
always at least one point where φ1 = φ2 = φ3 = 0.

Thus, the monopoles are topologically stable knots in the Higgs field.
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Why Are These Things Magnetic Monopoles?

Definition: A magnetic monopole is an object with a net magnetic charge, north
or south, with a radial magnetic field of the same form as the electric field
of a point charge.

Known magnets are always dipoles, with a north end and a south end. If such
a magnet is cut in half, one gets two dipoles, each with a north and south
end.

Energy of the configuration: the energy density contains a term
∑

a
�∇φa · �∇φa,

but the changing direction of φa (always radially outward) implies
|∇φa| ∝ 1/r. The total energy in a sphere of radius R is proportional
to

4π
∫ R

r2dr
(
1
r

)2

,

which diverges as R for large R.

With the vector gauge fields, however, the energy density is more complicated.
It can be made finite only if the gauge field configuration corresponds to a
net magnetic charge.
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Prediction of Magnetic Charge

The magnetic charge is uniquely determined, and is equal to 1/(2α)
times the electric charge of an electron, where α � 1/137 (α =
fine-structure constant = e2/h̄c in Gaussian units, or e2/(4πε0h̄c) in SI.)

The force between two monopoles is therefore (68.5)2 times as large as the force
between two electrons at the same distance. I.e., large!
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Kibble Estimate of

Magnetic Monopole Production

Since magnetic monopoles are knots in the GUT Higgs fields, they form at the
GUT phase transition, when the Higgs fields acquire nonzero mean values.
(“Mean” = average over time, not space.)

The density of these knots will be related to the misalignment of the Higgs field
in different regions.

Define a correlation length ξ, crudely, as the minimum distance such that the
Higgs field at point is almost uncorrelated with the Higgs field a distance
ξ away.

T.W.B. Kibble of Imperial College (London) proposed that the number density
of magnetic monopoles (and antimonopoles) can be estimated as

nM ≈ 1/ξ3 .
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Estimate of Correlation Length ξ

In the context of conventional (non-inflationary) cosmology, we can assume

1) that the Higgs field well before the GUT phase transition is in a
thermal state, with no long-range correlations.

2) that the universe before the phase transition is well-approximated by
a flat radiation-dominated Friedman-Robertson-Walker description.

3) phase transition happens promptly when the temperature of the GUT
phase transition is reached, at kT ≈ 1016 GeV.

Under these assumptions, we are confident that the correlation length ξ must be
less than or equal to the horizon length at the time of the phase transition.
This seemingly mild limit turns out to have huge implications.

On Problem Set 10, you will calculate the contribution to Ω today, from the
monopoles. I won’t give away the answer, but you should find that it is
greater than 1020.
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