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Announcements

Questions about quiz grading (or problem set grading):
Please ask either Bruno or me. We try to grade accurately, but sometimes
we make mistakes. We are always happy to discuss this with you, and are
happy to make changes when grading errors are found.
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Review from previous class:

A Closed Three-Dimensional Space

x2 + y2 + z2 + w2 = R2

x = R sin sin � cos�

y = R sin sin � sin�

z = R sin cos �

w = R cos ;

ds = Rd 
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Review from previous class:

Metric for the Closed 3D Space

Varying  : ds = Rd 

Varying � or �: ds2 = R2 sin2 (d�2 + sin2 � d�2)

If the variations are orthogonal to each other, then

ds2 = R2
�
d 2 + sin2  

�
d�2 + sin2 � d�2

��
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Review from previous class, but enlarged:

Implications of General Relativity

ds2 = R2
�
d 2 + sin2  

�
d�2 + sin2 � d�2

��
, where R is radius of curvature.

According to GR, matter causes space to curve. So R, the curvature radius,
should be determined by the matter.

From the metric, or from the picture of a sphere of radius R in a 4D
Euclidean embedding space, it is clear that R determines the size of the
space. But a(t), the scale factor, also determines the size of the space. So
they must be proportional.

But R is in meters, a(t) in meters/notch. So dimensional consistency =)
R / a(t)=

p
k, since [k] = notch�2.

In fact,

R2(t) =
a2(t)

k
:

(I do not know any way to explain why the proportionality constant is 1,
except by using the full equations of GR.)
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ds2 = R2
�
d 2 + sin2  

�
d�2 + sin2 � d�2

��
, where R is radius of curvature.

In fact,

R2(t) =
a2(t)

k
:

So,

ds2 =
a2(t)

k

�
d 2 + sin2  

�
d�2 + sin2 � d�2

��
:

It is common to introduce a new radial variable r � sin =
p
k, so

dr = cos d =
p
k =

p
1� kr2 d =pk : In terms of r,

ds2 = a2(t)

�
dr2

1� kr2 + r2
�
d�2 + sin2 � d�2

��
:

This is the spatial part of the Robertson-Walker metric.
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Open Universes

For k > 0 (closed universe),

ds2 = a2(t)

�
dr2

1� kr2 + r2
�
d�2 + sin2 � d�2

��
describes a homogeneous isotropic universe.

For k < 0 (open universe),

ds2 = a2(t)

�
dr2

1� kr2 + r2
�
d�2 + sin2 � d�2

��
still describes a homogeneous isotropic universe.

Properties are very di�erent. The closed universe reaches its equator at
r = 1=

p
k, which is a �nite distance from the origin,

a(t)

Z 1=
p
k

0

drp
1� kr2 =

�a(t)

2
p
k
:

The total volume is �nite. For the open universe, r has no limit, and the
volume is in�nite.
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From Space to Spacetime

In special relativity,

s2AB � (xA � xB)2 + (yA � yB)2 + (zA � zB)2 � c2 (tA � tB)2 :

s2AB is Lorentz-invariant | it has the same value for all inertial reference frames.

Meaning of s2AB:

If positive, it is the distance2 between the two events in the inertial frame
in which they are simultaneous. (Spacelike.)

If negative, then s2AB = �c2��2, where �� is the time interval between
the two events in the inertial frame in which they occur at the same
place. (Timelike.)

If zero, it implies that a light pulse could travel from the earlier to the later
event. (Lightlike.)

If you are interested, Lecture Notes 5 has an appendix which derives the
Lorentz transformation from time dilation, Lorentz contraction, and the
relativity of simultaneity, and shows that s2AB is invariant.
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Infinitesimal Separations and the Metric

Following Gauss, we focus on the distance between in�nitesimally separated
points. So

s2AB � (xA � xB)2 + (yA � yB)2 + (zA � zB)2 � c2 (tA � tB)
2

is replaced by

ds2 = dx2 + dy2 + dz2 � c2 dt2 ;

which is called the Minkowski metric.

The interpretation is the same as before: ds2 > 0 =) distance2 in
frame where events are simultaneous; ds2 < 0 =) ds2 = �c2 d�2,
where d� = time di�erence in frame where events are at same place; ds2 =
0 =) light can travel from one event to the other.

This will be our springboard to metric used in general relativity.
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Coordinates in Curves Spaces

In Newtonian physics or special relativity, coordinates have a direct
physical meaning: they directly measure distances or time intervals.

In curves spaces, there is generally no way to construct coordinates that
are directly connected to distances.

For example, on the surface of the Earth we measure East-West position
by longitude, but the distance for a longitude distance of 1 degree depends
on the latitude.

Bottom line: in general relativity (or in any curved space), coordinates are
just arbitrary markers, with any set of coordinates in principle as good as
any other.

Distances are determined from the coordinates, using the metric.

If one changes from one coordinate system to another, one changes the
metric so that distances remain unchanged.
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General Relativity: the Equivalence Principle
and Free-Falling Observers

Consider a person holding a rock inside an elevator, initially at rest. The
person feels the force of gravity pulling down on the rock, and the force of
gravity pressing his feet against the 
oor.

Now imagine that the elevator cable is cut, so the elevator falls | we
assume that there is no friction or air resistance. The elevator, person,
and rock all accelerate together. The person no longer feels his feet pressed
to the 
oor; if he lets go of the rock, it 
oats. The e�ects of gravity have
disappeared.

The Equivalence Principle says that the disappearance of gravity is precise:
as long as the elevator is small enough so that the gravitational �eld is
uniform, then there is absolutely no way that the person in the free-falling
elevator can detect the gravitational �eld of the Earth.
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The Equivalence Principle says that the disappearance of gravity is precise:
as long as the elevator is small enough so that the gravitational �eld is
uniform, then there is absolutely no way that the person in the free-falling
elevator can detect the gravitational �eld of the Earth.

The person in the elevator is called a free-falling observer, and the local
coordinate system that he would construct in his immediate vicinity is
called a free-falling coordinate system. The metric for the free-falling
coordinates, in the immediate vicinity of the person, is described by the
Minkowski metric. It is called locally Minkowskian.

We mentioned earlier that any quadratic metric for space (i.e., a positive
de�nite metric) is locally Euclidean. If the metric is negative for one
direction, then it is always locally Minkowskian.
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Adding Time to the
Robertson{Walker Metric

ds2 = �c2 dt2 + a2(t)

�
dr2

1� kr2 + r2
�
d�2 + sin2 � d�2

��
:

Why does dt2 term look like it does:

The coeÆcient of dt2 term must be independent of position, due to
homogeneity.

Terms such as dtdr or dtd� cannot appear, due to isotropy. That is, a
term dtdr would behave di�erently for dr > 0 and dr < 0, creating an
asymmetry between the +r and -r directions.

The coeÆcient must be negative, to match the sign in Minkowski space for
a locally free-falling coordinate system.
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Adding Time to the
Robertson{Walker Metric

ds2 = �c2 dt2 + a2(t)

�
dr2

1� kr2 + r2
�
d�2 + sin2 � d�2

��
:

Meaning:

If ds2 > 0, it is the square of the spatial separation measured by a local
free-falling observer for whom the two events happen at the same time.

If ds2 < 0, it is �c2 times the square of the time separation measured by
a local free-falling observer for whom the two events happen at the same
location.

If ds2 = 0, then the two events can be joined by a light pulse.
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Summary: Metrics of Interest

Minkowski Metric: (Special relativity)

ds2 = �c2dt2 + dx2 + dy2 + dz2

= �c2dt2 + dr2 + r2(d�2 + sin2 � d�2) :

Robertson{Walker Metric:

ds2 = �c2 dt2 + a2(t)

�
dr2

1� kr2 + r2
�
d�2 + sin2 � d�2

��
:

Meaning: If ds2 > 0, ds is distance in freely falling frame in which events

are simultaneous. If ds2 < 0, ds2 = �c2d�2, where d� is time interval in freely
falling frame in which events occur at same point. If ds2 = 0, events are lightlike
separated.
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Geodesics in General Relativity

A geodesic is a path connecting two points in spacetime, with the

property that the length of the curve is stationary with respect

to small changes in the path. It can be a maximum, minimum,

or saddle point.

In a curved spacetime, a geodesic is the closest thing to a straight

line that exists.

In general relativity, if no forces act on a particle other than

gravity, the particle travels on a geodesic.
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Geodesics in Two Spatial Dimensions

Metric:
ds2 = gxxdx

2 + gxydxdy + gyxdy dx+ gyydy
2 :

Let x1 � x, x2 � y, so xi is either, as i = 1 or 2.

ds2 =
2X

i=1

2X
j=1

gij(x
k) dxi dxj

= gij(x
k) dxi dxj :

Einstein summation convention: repeated indices within one term are summed
over coordinate indices (1 and 2), unless otherwise speci�ed.

The sum is always over one upper index and one lower, but we will not discuss
why some indices are written as upper and some as lower.

gij
�
xk
�
indicates that gij is a function of all the components of xk, i.e.,

x1 and x2.
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The Length of Path

Consider a path from A to B.

Path description: xi(�), where � is parameter running from 0 to �f .

xi(0) = xiA; xi(�f ) = xiB :

Between � and �+ d�,

dxi =
dxi

d�
d� ;

so

ds2 = gij
�
xk(�)

� dxi
d�

dxj

d�
d�2 ;

and then

ds =

r
gij
�
xk(�)

� dxi
d�

dxj

d�
d� ;

and

S[xi(�)] =

Z �f

0

r
gij
�
xk(�)

� dxi
d�

dxj

d�
d� :
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This and the following slides were not reached, but will be discussed in the next class.

Varying the Path

~xi(�) = xi(�) + �wi(�) ;

where
wi(0) = 0 ; wi(�f ) = 0 :

Geodesic condition:

dS
�
~xi(�)

�
d�

�����
�=0

= 0 for all wi(�) .
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De�ne

A(�; �) = gij
�
~xk(�)

� d~xi
d�

d~xj

d�
;

so we can write

S
�
~xi(�)

�
=

Z �f

0

r
gij
�
xk(�)

� dxi
d�

dxj

d�
d�

=

Z �f

0

p
A(�; �) d� :

Using chain rule,

d

d�
gij
�
~xk(�)

�����
�=0

=
@gij
@xk

����
xk=xk(�)

@~xk

@�

����
�=0

=
@gij
@xk

�
x`(�)

�
wk ;

and
d

d�

�
@~xi

@�

�
=

d

d�

�
@xi(�)

@�
+ �

@wi(�)

@�

�
=
@wi(�)

@�
:
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S
�
~xi(�)

�
=

Z �f

0

p
A(�; �) d� ;

where

A(�; �) = gij
�
~xk(�)

� d~xi
d�

d~xj

d�
;

with

d

d�
gij
�
~xk(�)

�����
�=0

=
@gij
@xk

�
x`(�)

�
wk ;

d

d�

�
@~xi

@�

�
=
@wi(�)

@�
:

Then
dS
�
~xi(�)

�
d�

�����
�=0

=
1

2

Z �f

0

1p
A(�; 0)

�
@gij
@xk

wk dx
i

d�

dxj

d�
+

+gij
dwi

d�

dxj

d�
+ gij

dxi

d�

dwj

d�

�
d� ;

where the metric gij is to be evaluated at x`(�).
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dS
�
~xi(�)

�
d�

�����
�=0

=
1

2

Z �f

0

1p
A(�; 0)

�
@gij
@xk

wk dx
i

d�

dxj

d�
+

+gij
dwi

d�

dxj

d�
+ gij

dxi

d�

dwj

d�

�
d� :

Manipulating \dummy" indices: in third term, replace i ! j and j ! i, and

recall that gij = gji. Then 2nd & 3rd term are equal:

dS
�
~xi(�)

�
d�

�����
�=0

=
1

2

Z �f

0

1p
A(�; 0)

�
@gij
@xk

wk dx
i

d�

dxj

d�
+ 2gij

dwi

d�

dxj

d�

�
d� :
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Repeating,

dS
�
~xi(�)

�
d�

�����
�=0

=
1

2

Z �f

0

1p
A(�; 0)

�
@gij
@xk

wk dx
i

d�

dxj

d�
+ 2gij

dwi

d�

dxj

d�

�
d� :

Integration by Parts: Integral depends on both wk and dwi=d�. Can

eliminate dwi=d� by integrating by parts:

Z �f

0

�
1p
A
gij

dxj

d�

�
dwi

d�
d� =

Z �f

0

d

d�

�
1p
A
gij

dxj

d�
wi

�
d�

�
Z �f

0

d

d�

�
1p
A
gij

dxj

d�

�
wi d� :

But Z �f

0

d

d�

�
1p
A
gij

dxj

d�
wi

�
d� =

�
1p
A
gij

dxj

d�
wi

�����
�=�f

�=0

= 0 ;

since wi(�) vanishes at � = 0 and � = �f .
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So

dS

d�

����
�=0

=
1

2

Z �f

0

�
1p
A

@gij
@xk

dxi

d�

dxj

d�
wk � 2

d

d�

�
1p
A
gij

dxj

d�

�
wi

�
d� :

More index juggling: in 1st term replace i! j; j ! k; k ! i:

dS

d�

����
�=0

=

Z �f

0

�
1

2
p
A

@gjk
@xi

dxj

d�

dxk

d�
� d

d�

�
1p
A
gij

dxj

d�

��
wi(�) d� :

To vanish for all wi(�) which vanish at � = 0 and � = �f , the quantity in
curly brackets must vanish. If not, then suppose that f g 6= 0 at some
� = �0. By continuity, f g 6= 0 in some neighborhood of �0. Choose w

i(�)
to be positive in this neighborhood, and zero everywhere else, and one has
a contradiction.

So

d

d�

�
1p
A
gij

dxj

d�

�
=

1

2
p
A

@gjk
@xi

dxj

d�

dxk

d�
:
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Repeating,

d

d�

�
1p
A
gij

dxj

d�

�
=

1

2
p
A

@gjk
@xi

dxj

d�

dxk

d�
:

This is complicated, since A is complicated.

Simplify by choice of parameterization: This result is valid for any parame-

terization. We don't need that! We can choose � to be the path length.
Since

ds =

r
gij
�
xk(�)

�dxi
d�

dxj

d�
d� =

p
Ad� ;

we see that d� = ds implies

A = 1 (for � = path length).

Then

d

ds

�
gij

dxj

ds

�
=

1

2

@gjk
@xi

dxj

ds

dxk

ds
:
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Alternative Form of Geodesic Equation

Most books write the geodesic equation di�erently, as

d2xi

ds2
= ��ijk

dxj

ds

dxk

ds
;

where

�ijk =
1

2
gi` (@jg`k + @kg`j � @`gjk)

and gi` is the matrix inverse of gij . The quantity �ijk is called the aÆne
connection.

If you are interested, see the lecture notes. If you are not interested, you can
skip this.
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BLACK HOLES (Fun!)

The Schwarzschild Metric:

For any spherically symmetric distribution of mass, outside the mass the metric
is given by the Schwarzschild metric,

ds2 = �c2d�2 = �
�
1� 2GM

rc2

�
c2dt2 +

�
1� 2GM

rc2

��1
dr2

+ r2d�2 + r2 sin2 � d�2 ;

where M is the total mass, G is Newton's gravitational constant, c is the
speed of light, and � and � have the usual polar-angle ranges.
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Schwarzschild Horizon

ds2 = �c2d�2 = �
�
1� 2GM

rc2

�
c2dt2 +

�
1� 2GM

rc2

��1
dr2

+ r2d�2 + r2 sin2 � d�2 :

The metric is singular at

r = RS � 2GM

c2
;

where the coeÆcient of c2dt2 vanishes, and the coeÆcient of dr2 is in�nite.

Surprisingly, this singularity is not real | it is a coordinate artifact. There are
other coordinate systems where the metric is smooth at RS .

But RS is a horizon: If you fall past the horizon, there is no return, even if
you are photon.
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Schwarzschild Radius of the Sun

RS;� =
2GM

c2

=
2� 6:673� 10�11 m3-kg�1-s�2 � 1:989� 1030 kg

(2:998� 108 m-s�1)2

= 2:95 km :

If the Sun were compressed to this radius, it would become a black hole.
Since the Sun is much larger than RS , and the Schwarzschild metric is only
valid outside the matter, there is no Schwarzschild horizon in the Sun.

At the center of our galaxy is a supermassive black hole, with M = 4:1�
106M�. This gives RS = 1:2 � 1010 meters � 1/4 of radius of orbit of
Mercury � 17 times radius of Sun.
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Radial Geodesics in the Schwarzschild Metric

ds2 = �c2d�2 = �
�
1� 2GM

rc2

�
c2dt2 +

�
1� 2GM

rc2

��1
dr2

+ r2d�2 + r2 sin2 � d�2 :

Consider a particle released from rest at r = r0.

r is a \radial coordinate," but not the radius, since it is not the distance from
some center. If r is varied by dr, the distance traveled is not dr, but
dr=
p
1� 2GM=rc2. r can be called the \circumferential radius," since the

term r2(d�2 + sin2 � d�2) in the metric implies that the circumference of a
circle about the origin is 2�r.

By symmetry, the particle will fall straight down, with no change in � or �.
Spherical symmetry implies that all directions in � and � are equivalent,
so any motion in �{� space would violate this symmetry.
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Particle Trajectories in Spacetime

Particle trajectories are timelike, so we use proper time � to parameterize them,
where ds2 � �c2d�2. This implies that A = �c2, instead of A = 1, but as
long as A is constant, it drops out of the geodesic equation.

By tradition, the spacetime indices in general relativity are denoted by Greek
letters such as �, �, �, �, and are summed from 0 to 3, where x0 � t.

The geodesic equation

d

ds

�
gij

dxj

ds

�
=

1

2

@gjk
@xi

dxj

ds

dxk

ds

is then rewritten as

d

d�

�
g��

dx�

d�

�
=

1

2

@g��
@x�

dx�

d�

dx�

d�
:
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Radial Trajectory Equations

Only dr=d� and dt=d� are nonzero. But they are related by the metric:

c2d�2 =

�
1� 2GM

rc2

�
c2 dt2 �

�
1� 2GM

rc2

��1
dr2

implies that

c2 =

�
1� 2GM

rc2

�
c2
�
dt

d�

�2

�
�
1� 2GM

rc2

��1 �
dr

d�

�2

:

Then, looking at the � = r geodesic equation,

d

d�

�
g��

dx�

d�

�
=

1

2

@g��
@x�

dx�

d�

dx�

d�

implies that

d

d�

�
grr

dr

d�

�
=

1

2
@rgrr

�
dr

d�

�2

+
1

2
@rgtt

�
dt

d�

�2

;

where

grr =

�
1� 2GM

rc2

��1
; gtt = �c2

�
1� 2GM

rc2

�
:
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Repeating,

c2 =

�
1� 2GM

rc2

�
c2
�
dt

d�

�2

�
�
1� 2GM

rc2

��1 �
dr

d�

�2

:

d

d�

�
grr

dr

d�

�
=

1

2
@rgrr

�
dr

d�

�2

+
1

2
@rgtt

�
dt

d�

�2

;

where

grr =

�
1� 2GM

rc2

��1
; gtt = �c2

�
1� 2GM

rc2

�
:

Expand
d

d�

�
grr

dr

d�

�
with the product rule, replace (dt=d� )2 using the equation above, and simplify.
Result:

d2r

d�2
= �GM

r2
;

which looks just like Newton, but it is not really the same. Here � is the proper
time as measured by the infalling object, and r is not the radial distance.
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Solving the Equation

d2r

d�2
= �GM

r2
:

Like Newton's equation, multiply by dr=d� , and it can then be written as

d

d�

(
1

2

�
dr

d�

�2

� GM

r

)
= 0 :

Quantity in curly brackets is conserved. Initial value (on release from rest at
r0) is �GM=r0, so it always has this value. Then

dr

d�
= �

s
2GM

�
1

r
� 1

r0

�
= �

s
2GM(r0 � r)

rr0
:
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Repeating,

dr

d�
= �

s
2GM

�
1

r
� 1

r0

�
= �

s
2GM(r0 � r)

rr0
:

Bring all r-dependent factors to one side, and bring d� to the other side, and
integrate:

� (rf ) = �
Z rf

r0

dr

r
rr0

2GM(r0 � r)

=

r
r0

2GM

(
r0 tan

�1
 s

r0 � rf
rf

!
+
q
rf (r0 � rf )

)
:

Conclusion: object will reach r = 0 in a �nite proper time � .
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But Coordinate Time t is Different!

dr

dt
=

dr

d�

d�

dt
=

dr=d�

dt=d�

=
dr=d�q

h�1(r) + c�2h�2(r)
�
dr
d�

�2 ;
where

h(r) � 1� RS

r
= 1� 2GM

rc2
:

Look at behavior near horizon; h�1(r) blows up:

h�1(r) =
r

r �RS
� RS

r �RS
:

Denominator is dominated by 2nd term, which gives

dr

dt
� c

�
r �RS

RS

�
:
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Repeating,
dr

dt
� c

�
r �RS

RS

�
:

Rearranging and integrating to some �nal r = rf , one �nds

t(rf ) � �RS

c

Z rf dr0

r0 �RS
� �RS

c
ln(rf �RS) :

Thus t diverges logarithmically as rf ! RS , so the object does not reach RS

for any �nite value of t.
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