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Announcements

For today only, due to an MIT faculty meeting, I am postponing my office
hour by one hour, so it will be 5:05-6:00 pm.
Problem Set 8 is due this Friday, November 20.
Quiz 3 will be on Wednesday, December 2, the Wednesday after the
Thanksgiving break.
It will follow the pattern of the two previous quizzes: Review Problems, a

Review Session, and modified office hours the week of the quiz. Details
to be announced.

Lecture Notes 8, on the subject of today’s class, will soon be posted.
I have posted Notes on Thermal Equilibrium on the Lecture Notes web
page. These are intended as background and clarification for Ryden’s
sections on hydrogen recombination and deuterium synthesis. It will not
be covered by Quiz 3, but there will be one or two problems about it on
the last problem set.
There will be one last problem set, Problem Set 9, due the last day of
classes, Wednesday December 9. No final exam!
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Exit Poll, Last Class
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Summary of Last Lecture

Age of the universe with matter, radiation, vacuum energy, and curvature:

t0 =
1
H0

∫ 1

0

xdx√
Ωm,0x+Ωrad,0 +Ωvac,0x4 +Ωk,0x2

.

Look-Back time:

Change variable of integration from x to z, with 1 + z = a(t0)/a(t) = 1/x.
Then integrate over z from 0 to zS, the redshift of the source:

tlook-back(zS) =

1
H0

∫ zS

0

dz′

(1 + z′)
√
Ωm,0(1 + z′)3 +Ωrad,0(1 + z′)4 + Ωvac,0 +Ωk,0(1 + z′)2

.
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Review from last class:

Ryden Benchmark and Planck 2018 Best Fit

Parameters Ryden
Benchmark

Planck 2018
Best Fit

H0 68 67.7± 0.4 km·s−1·Mpc−1

Baryonic matter Ωb 0.048 0.0490± 0.0007∗

Dark matter Ωdm 0.262 0.261± 0.004∗

Total matter Ωm 0.31 0.311± 0.006

Vacuum energy Ωvac 0.69 0.689± 0.006
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Review from last class:

Controversy in Parameters: \Hubble Tension"

From the CMB, the best number is from

Planck 2018: H0 = 67.66 ± 0.42 km sec−1 Mpc−1

From standard candles and Cepheid variables,
SH0ES (Supernovae, H0, for the Equation of State of dark energy,

group led by Adam Riess):

H0 = 74.03 ± 1.42 km sec−1 Mpc−1.

The difference is about 4.3 σ. If the discrepancy is random and the normal
probability distribution applies, the probability of such a large deviation is
about 1 in 50,000.
From the “tip of the red giant branch”,

Wendy Freedman’s group:
H0 = 69.6 ± 0.8(stat) ± 1.7(sys) km sec−1 Mpc−1

References: A. Riess et al., Astrophys. J. 876 (2019) 85 [arXiv:1903.07603].

W. Freedman et al., arXiv:2002.01550 (2020).
–6–

Review from last class:

The Hubble Diagram:

Radiation Flux vs. Redshift

For a closed universe, write the metric:

ds2 = −c2 dt2 + ã2(t)
{
dψ2 + sin2 ψ

(
dθ2 + sin2 θ dφ2

)}
,

where sinψ ≡ √
k r.

Consider a sphere centered at the
source, at the same radius as us. The
fraction of photons hitting the sphere
that hit the detector is just the ratio
of the areas.
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Review from last class:

ds2 = −c2 dt2 + ã2(t)
{
dψ2 + sin2 ψ

(
dθ2 + sin2 θ dφ2

)}
,

Consider a sphere centered at the source,
at the same radius as us. The fraction
of photons hitting the sphere that hit the
detector is just the ratio of the areas.

The power hitting the sphere is the power of the source, reduced by two
factors of (1+ zS): one for the redshift of each photon, one for the redshift
of the arrival rate of photons.

Need ψ(zS) to evaluate the area of the sphere. ds2 = 0 gives expression
for dψ/dt. Integration over t relates ψ(zS) to time of emission, and hence
redshift, since 1 + z = a(t0)/a(tS). Changing variable of integration from
t to z, the integral can be expressed in terms of H(z), which is determined
by the first-order Friedmann equation.
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Review from last class:

Final answer (flux J from source of power P at redshift zS):

J =
PH2

0 |Ωk,0|
4π(1 + zS)2c2 sin2 ψ(zS)

,

where

ψ(zS) =
√
|Ωk,0|

×
∫ zS

0

dz√
Ωm,0(1 + z)3 +Ωrad,0(1 + z)4 +Ωvac,0 +Ωk,0(1 + z)2

.
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Supernovae Type Ia as Standard Candles

Supernovae Type Ia are believed to be the result of a binary system containing
a white dwarf — a stellar remnant that has burned its nuclear fuel, and is
supported by electron degeneracy pressure. As the white dwarf accretes gas
from its companion star, its mass builds up to 1.4 M�, the Chandrasekhar
limit, the maximum mass that can be supported by electron degeneracy
pressure. The star then collapses, leading to a supernova explosion.
Because the Chandrasekhar limit is fixed by physics, all SN Ia are very
similar in power output.

There are still some known variations in power output, but they are found to
be correlated with the shape of the light curve: if the light curve rises and
falls slowly, the supernova is brighter than average.

The properties of SN Ia are known best from observation — theory lags behind.

IF you would like to learn more about this, see Ryden, Section 6.5 [First edition:
7.5] (which we skipped — you should not feel obligated to read this).

Alan Guth

Massachusetts Institute of Technology

8.286 Class 21, November 18, 2020 –10–

Hubble diagram from Riess
et al., Astronomical Journal
116, No. 3, 1009 (1998)
[http://arXiv.org/abs/astro-
ph/9805201].

(High-z Supernova Search
Team)
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Alan Guth, Problems of the Conventional (Non-inflationary) Hot Big Bang Model 8.286 Class 21, November 18, 2020, p. 4.

Dimmer Supernovae Imply Acceleration

The acceleration of the universe is deduced from the fact that distant
supernovae appear to be 20-30% dimmer than expected.

Why does dimness imply acceleration?

• Consider a supernova of specified apparent brightness.

• “Dimmer” implies data point is to the left of where expected — at
lower z.

• Lower z implies slower recession, which implies that the universe was
expanding slower than expected in the past — hence, acceleration!
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Other Possible Explanations for Dimness

Absorption by dust.

• But absorption usually reddens the spectrum. This would have
to be “gray” dust, absorbing uniformly at all observed wavelengths.
Such dust is possible, but not known to exist anywhere.

• Dust would most likely be in the host galaxy, which would cause
variable absorption, depending on SN location in galaxy. Such
variability is not seen.

Chemical evolution of heavy element abundance.
• But nearby and distant SN Ia look essentially identical.
• For nearby SN Ia, heavy element abundance varies, and does not
appear to affect brightness.

Additional evidence against dust or chemical evolution: A SN Ia has been
found at z = 1.7, which is early enough to be in the decelerating era of the
vacuum energy density model. It is consistent with deceleration, but not
consistent with either models of absorption or chemical evolution.
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Evidence for the Accelerating Universe

1) Supernova Data: distant SN Ia are dimmer than expected by about 20–
30%.

2) Cosmic Microwave Background (CMB) anisotropies: gives Ωvac close to SN
value. Also gives Ωtot = 1 to 1/2% accuracy, which cannot be accounted
for without dark energy.

3) Inclusion of Ωvac ≈ 0.70 makes the age of the universe consistent with the
age of the oldest stars.

With the 3 arguments together, the case for the accelerating universe and
Ωdark energy ≈ 0.70 has persuaded almost everyone.

The simplest explanation for dark energy is vacuum energy, but
“quintessence” is also possible.
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Particle Physics of a Cosmological Constant

uvac = ρvacc
2 =

Λc4

8πG

Contributions to vacuum energy density:

1) Quantum fluctuations of the photon and other bosonic fields: positive
and divergent.

2) Quantum fluctuations of the electron and other fermionic fields:
negative and divergent.

3) Fields with nonzero values in the vacuum, like the Higgs field.
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If infinities are cut off at the Planck scale (quantum gravity scale), then
infinities become finite, but

> 120 orders of magnitude too large!

For lack of a better explanation, many cosmologists (including Steve
Weinberg and yours truly) seriously discuss the possibility that the vacuum
energy density is determined by “anthropic” selection effects: that is,
maybe there are many types of vacuum (as predicted by string theory),
with different vacuum energy densities, with most vacuum energy densities
roughly 120 orders of magnitude larger than ours. Maybe we live in a very
low energy density vacuum because that is where almost all living beings
reside. A large vacuum energy density would cause the universe to rapidly
fly apart (if positive) or implode (if negative), so life could not form.
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The Horizon/Homogeneity Problem

General question: how can we explain the large-scale uniformity of the
universe?

Possible answer: maybe the universe just started out uniform.

• There is no argument that excludes this possibility, since we don’t
know how the universe came into being.

• However, if possible, it seems better to explain the properties of the
universe in terms of things that we can understand, rather than to
attribute them to things that we don’t understand.
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The Horizon in Cosmology

The concept of a horizon was first introduced into cosmology by Wolfgang
Rindler in 1956.

The “horizon problem” was discussed (not by that name) in at least
two early textbooks in general relativity and cosmology: Weinberg’s
Gravitation and Cosmology (1972), and Misner, Thorne, and Wheeler’s
(MTW’s) Gravitation (1973).
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The Cosmic Microwave Background

The strongest evidence for the uniformity of the universe comes from the
CMB, since it has been measured so precisely.

The radiation appears slightly hotter in one direction than in the opposite
direction, by about one part in a thousand — but this nonuniformity can
be attributed to our motion through the background radiation.

Once this effect is subtracted out, using best-fit parameters for the velocity,
it is found that the residual temperature pattern is uniform to a few parts
in 105.

Could this be simply the phenomenon of thermal equilibrium? If you put
an ice cube on the sidewalk on a hot summer day, it melts and come sto
the same temperature as the sidewalk.

BUT: in the conventional model of the universe, it did not have
enough time for thermal equilibrium to explain the uniformity, if
we assume that it did not start out uniform. If no matter, energy,
or information can travel faster than light, then it is simply not
possible.
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Basic History of the CMB

In conventional cosmological model, the universe at the earliest times was
radiation-dominated. It started to be matter-dominated at teq ≈ 50, 000
years, the time of matter-radiation equality.

At the time of decoupling td ≈ 380, 000 years, the universe cooled to
about 3000 K, by which time the hydrogen (and some helium) combined so
thoroughly that free electrons were very rare. At earlier times, the universe
was in a mainly plasma phase, with many free electrons, and photons
were essentially frozen with the matter. At later times, the universe was
transparent, so photons have traveled on straight lines. We can say that
the CMB was released at about 380,000 years.

Since the photons have been mainly traveling on straight lines since t = td,
they have all traveled the same distance. Therefore the locations from
which they were released form a sphere centered on us. This sphere is
called the surface of last scattering, since the photons that we receive now
in the CMB was mostly scattered for the last time on or very near this
surface.
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As we learned in Lecture Notes 4, the horizon distance is defined as the
present distance of the furthest particles from which light has had time to
reach us, since the beginning of the universe.

For a matter-dominated flat universe, the horizon distance at time t is 3ct,
while for a radiation-dominated universe, it is 2ct.

At t = td the universe was well into the matter-dominated phase, so we
can approximate the horizon distance as

�h(td) ≈ 3ctd ≈ 1, 100, 000 light-years.

For comparison, we would like to calculate the radius of the surface of last
scattering at time td, since this region is the origin of the photons that
we are now receiving in the CMB. I will denote the physical radius of the
surface of last scattering, at time t, as �p(t).
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�h(td) ≈ 3ctd ≈ 1, 100, 000 light-years.

For comparison, we would like to calculate the radius of the surface of last
scattering at time td, since this region is the origin of the photons that we are
now receiving in the CMB. I will denote the physical radius of the surface of
last scattering, at time t, as �p(t).

To calculate �p(td), I will make the crude approximation that the universe
has been matter-dominated at all times. (We will find that this horizon
problem is very severe, so even if our calculation is wrong by a factor of 2,
it won’t matter.)

Strategy: find �p(t0), and scale to find �p(td). Under the assumption of
a flat matter-dominated universe, we learned that the physical distance
today to an object at redshift z is

�p(t0) = 2cH−1
0

[
1− 1√

1 + z

]
.
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�p(t0) = 2cH−1
0

[
1− 1√

1 + z

]
.

The redshift of the surface of last scattering is about

1 + z =
a(t0)
a(td)

=
3000 K
2.7 K

≈ 1100 .

If we take H0 = 67.7 km-s−1-Mpc−1, one finds that H−1
0 ≈ 14.4× 109 yr

and �p(t0) ≈ 28.0× 109 light-yr. (Note that �p(t0) is equal to 0.970 times
the current horizon distance — very close.)

To find �p(td), just use the fact that the redshift is related to the scale
factor:

�p(td) =
a(td)
a(t0)

�p(t0)

≈ 1
1100

× 28.0× 109 lt-yr ≈ 2.55× 107 lt-yr .
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�h(td) ≈ 3ctd ≈ 1, 100, 000 light-years.

�p(td) =
a(td)
a(t0)

�p(t0)

≈ 1
1100

× 28.0× 109 lt-yr ≈ 2.55× 107 lt-yr .

Comparison: At the time of decoupling, the ratio of the radius of the
surface of last scattering to the horizon distance was

�p(td)
�h(td)

≈ 2.55× 107 lt-yr
1.1× 106 lt-yr

≈ 23 .
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Summary of the Horizon Problem

Suppose that one detects the cosmic microwave background in a certain
direction in the sky, and suppose that one also detects the radiation from
precisely the opposite direction. At the time of emission, the sources of
these two signals were separated from each other by about 46 horizon
distances. Thus it is absolutely impossible, within the context of this
model, for these two sources to have come into thermal equilibrium by
any physical process.

Although our calculation ignored the dark energy phase, we have found in
previous examples that such calculations are wrong by some tens of a
percent. (For example we found teq ≈ 75, 000 years, when it should have
been about 50,000 years.) Since 46 
 1, there is no way that a more
accurate calculation could cause this problem to go away.
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This and the following slides were not reached, but will be discussed in the next class.

The Flatness Problem

A second problem of the conventional cosmological model is the flatness
problem: why was the value of Ω in the early universe so extraordinarily
close to 1?

Today we know, according to the Planck satellite team analysis (2018),
that

Ω0 = 0.9993± 0.0037

at 95% confidence. I.e., Ω = 1 to better than 1/2 of 1%.

As we will see, this implies that Ω in the early universe was extaordinarily
close to 1. For example, at t = 1 second,

|Ω− 1|t=1 sec < 10−18 .
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The underlying fact is that the value Ω = 1 is a point of unstable
equilibrium, something like a pencil balancing on its point. If Ω is ever
exactly equal to one, it will remain equal to one forever — that is, a flat
(k = 0) universe remains flat. However, if Ω is ever slightly larger than
one, it will rapidly grow toward infinity; if Ω is ever slightly smaller than
one, it will rapidly fall toward zero. For Ω to be anywhere near 1 today, Ω
in the early universe must have been extraordinarily close to one.

Like the horizon problem, the flatness problem could in principle be solved
by the initial conditions of the universe: maybe the universe began with
Ω ≡ 1.

• But, like the horizon problem, it seems better to explain the properties
of the universe, if we can, in terms of things that we can understand,
rather than to attribute them to things that we don’t understand.
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History of the Flatness Problem

The mathematics behind the flatness problem was undoubtedly known to almost
anyone who has worked on the big bang theory from the 1920’s onward, but
apparently the first people to consider it a problem in the sense described
here were Robert Dicke and P.J.E. Peebles, who published a discussion in
1979.∗

∗R.H. Dicke and P.J.E. Peebles, “The big bang cosmology — enigmas and nostrums,” in
General Relativity: An Einstein Centenary Survey, eds: S.W. Hawking and W.
Israel, Cambridge University Press (1979).
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The Mathematics of the Flatness Problem

Start with the first-order Friedmann equation:

H2 ≡
(
ȧ

a

)2

=
8π
3
Gρ− kc2

a2
.

Remembering that Ω = ρ/ρc and that ρc = 3H2/(8πG), one can divide
both sides of the equation by H2 to find

1 =
ρ

ρc
− kc2

a2H2
=⇒ Ω − 1 =

kc2

a2H2
.
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Evolution of Ω − 1 During

the Radiation-Dominated Phase

Ω− 1 =
kc2

a2H2
.

For a (nearly) flat radiation-dominated universe, a(t) ∝ t1/2, so H = ȧ/a =
1/(2t). So

Ω− 1 ∝
(

1
t1/2

)2 (
1
t−1

)2

∝ t (radiation dominated).
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Evolution of Ω − 1 During

the Matter-Dominated Phase

Ω− 1 =
kc2

a2H2
.

For a (nearly) flat matter-dominated universe, a(t) ∝ t2/3, soH = ȧ/a = 2/(3t).
So

Ω− 1 ∝
(

1
t2/3

)2 (
1
t−1

)2

∝ t2/3 (matter-dominated).
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Tracing Ω − 1 from

Now to 1 Second

Today,

|Ω0 − 1| < .01 .

I will do a crude calculation, treating the universe as matter dominated from
50,000 years to the present, and as radiation-dominated from 1 second to
50,000 years.

During the matter-dominated phase,

(Ω− 1)t=50,000 yr ≈
(

50,000
13.8× 109

)2/3

(Ω0 − 1) ≈ 2.36× 10−4 (Ω0 − 1) .
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|Ω0 − 1| < .01 .

(Ω − 1)t=50,000 yr ≈
(

50,000
13.8× 109

)2/3

(Ω0 − 1) ≈ 2.36× 10−4 (Ω0 − 1) .

During the radiation-dominated phase,

(Ω− 1)t=1 sec ≈
(

1 sec
50,000 yr

)
(Ω− 1)t=50,000 yr

≈ 1.49× 10−16 (Ω0 − 1) .

The conclusion is therefore

|Ω− 1|t=1 sec < 10−18 .
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The conclusion is therefore

|Ω− 1|t=1 sec < 10−18 .

Even if we put ourselves mentally back into 1979, we would have said that
0.1 < Ω0 < 2, so |Ω0 − 1| < 1, and would have concluded that

|Ω− 1|t=1 sec < 10−16 .

The Dicke & Peebles paper, that first pointed out this problem, also considered
t = 1 second, but concluded (without showing the details) that

|Ω− 1|t=1 sec < 10−14 .

They were perhaps more conservative, but concluded nonetheless that this
extreme fine-tuning cried out for an explanation.
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