
Alan Guth, 8.323 Lecture, May 6, 2008, p. 1.

MASSACHUSETTS INSTITUTE OF TECHNOLOGY
Physics Department

8.323: Relativistic Quantum Field Theory I

The Dirac Field
Part III: Dirac Equation,
Lagrangian, Hamiltonian,
Weyl Fields, Propagator

Tuesday, May 6, 2008

— Alan Guth

Alan Guth

Massachusetts Institute of Technology

8.323, May 6, 2008

WHAT HAVE WE LEARNED?

1) We learned that spin-1
2 particles cannot be bosons, but can be fermions.

2) From Eq. (100), |βL|2 = |βR|2 = 1, we learned that antiparticles are manda-

tory. In the equal-time commutator, the antiparticle contribution canceled the
particle contribution, but only if the antiparticle creation/annihilation operators
are included in the field with the same magnitude as the particle operators.

3) We found that the phases of βL and βR had to be equal to each other, but

were undetermined. This freedom to rotate both phases together should have
been expected: it corresponds to changing the phase of all antiparticle states.
We never defined those phases in the first place, so it should make no difference
if they are changed. (All antiparticle states must have their phases changed in
the same way, however, or else the representation of the Poincaré group would
have to be changed.)
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Why is P 0 > 0 Important?

If we did not insist that P 0 > 0, then we could have replaced the b†s(�p) in the
expression for the field,

ψa(�x, 0) =
∫

d3p

(2π)3
1√
2E�p

∑
s

{
as(�p) usa(�p) e−ipµx

µ

+ b†s(�p) vsa(�p) eipµx
µ
}

,

by bs(�p). That is, we could use an operator that, instead of creating an
antiparticle with positive energy, would destroy a particle with negative energy.
This interchange of bs and b†s would reverse the sign of

[
b†s(−�p) , bs(−�q )

]
that

appeared in Eq. (93), allowing the bosonic commutator to vanish for spacelike
separations. Such negative energy particles, however, apparently do not exist.
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THE DIRAC EQUATION!

In this discussion, the Dirac equation is a byproduct. Now that we have constructed
the Dirac field as a quantum operator, we can notice that it satisfies the Dirac
equation.

Recall from Eqs. (76) and (77) that

usL(�q = 0) = usR(�q = 0) =
√
mξs , (103)

and that

γ0 =
 0 1

1 0

 . (104)

Thus γ0 exchanges L and R, and for �q = 0 the u′s are equal. Thus

γ0 us(�q = 0) = us(�q = 0) .
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γ0 us(�q = 0) = us(�q = 0) .

Since qµ = (m, 0, 0, 0), this can be rewritten as

qµγ
µ us(�q = 0) = mus(�q = 0) .

We can show that it holds in all frames by applying Λ 1
2
(B�p ) to both sides, using

Λ 1
2
(B�p )us(�q = 0) = us(�p) (105)

and
Λ 1

2
γµΛ−1

1
2

=
[
Λ−1

]µ
ν γ

ν , (106)

which follows from the commutation relations between γµ and the Lorentz
generators, which show that γµ transforms as a Lorentz 4-vector. Remember that
B�p q = p.
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Thus
Λ 1

2
(B�p )qµγµ us(�q = 0) = mus(�p) ,

where the LHS can be rewritten as

LHS = qµ Λ 1
2
(B�p ) γµΛ−1

1
2

(B�p ) Λ 1
2
(B�p ) us(�q = 0)

= qµ

[
B−1
�p

]µ
ν γ

ν us(�p)

= q · (B−1
�p γ) us(�p) = p · γ us(�p)

where in the last line we used the fact that a dot product is Lorentz invariant,
so we can apply B�p to each factor. Finally,

(γ · p) us(�p) = mus(�p) . (107)

Alan Guth

Massachusetts Institute of Technology

8.323, May 6, 2008 –5–



Alan Guth, 8.323 Lecture, May 6, 2008, p. 4.

For the v’s, we had from Eq. (86),

vsL(�q = 0) = −vsR(�q = 0) . (108)

When we wrote Eq. (86) we allowed for an arbitrary multiplicative factor between
vsL(�q = 0) and vsR(�q = 0), in the form of the β’s, but later we found that causality
required βL = βR, so Eq. (108) is mandatory. The calculation for the v’s is
otherwise identical, leading to

(γ · p) vs(�p) = −mvs(�p) . (109)
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Summarizing, we have

ψa(x) =
∫

d3p

(2π)3
1√
2E�p

∑
s

{
as(�p) usa(�p) e−ipµx

µ

+ b†s(�p) vsa(�p) eipµx
µ
}

,

(72)

(γ · p) us(�p) = mus(�p) , (107)

and

(γ · p) vs(�p) = −mvs(�p) . (109)

The application of ∂µ to ψ(x) brings down a factor of −ipµ for the first term and
ipµ for the second term, so the Dirac field satisfies

(iγµ ∂µ −m)ψ(x) = 0 . (110)
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The Dirac Equation in 2× 2 Blocks

It is sometimes useful to use our representation of the γ matrices, and the definitions
σµ = (1, σi) and σ̄µ = (1,−σi) to write the Dirac equation as:

 −m iσ · ∂
iσ̄ · ∂ −m

  ψL
ψR

 = 0 . (111)

In this form we see that the spatial derivative mixes the upper and lower (L and
R) components, as we commented earlier that we expected, on the grounds
that (0, 1

2 ) and ( 1
2 ,

1
2 ) can only produce ( 1

2 , 0) or ( 1
2 , 1).
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The Dirac Lagrangian

The Dirac equation is

(iγµ ∂µ −m)ψ(x) = 0 . (110)

This is a 4-component equation, and the Lagrangian must be a real scalar.
The natural guess is therefore to contract these indices with ψ†(x), where

ψ(x) ≡


ψ1(x)
ψ2(x)
ψ3(x)
ψ4(x)

 , ψ†(x) =
ψ†

1(x) ψ†
2(x) ψ†

3(x) ψ†
4(x)

 .

(112)
Then we can try

Lmaybe = ψ†(iγµ∂µ −m)ψ . (113)
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In principle we should vary the real and imaginary (e.g., hermitian and anti-
hermitian) parts of ψ(x), but we can equivalently vary ψ and ψ† independently
by defining

∂̄ψa
≡ 1

2

(
∂

∂ Reψa

)
− i

(
∂

∂ Imψa

)

∂̄ψ†
a
≡ 1

2

(
∂

∂ Reψa

)
+ i

(
∂

∂ Imψa

) (114)

If we vary
Lmaybe = ψ†(iγµ∂µ −m)ψ

with respect to ψ†, one gets the Dirac equation. Nonetheless, Peskin &
Schroeder reject Lmaybe because it is not Lorentz-invariant.

This reason for rejecting Lmaybe seems weak to me, since it did generate the
correct, Lorentz-invariant Dirac equation.
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Rejecting Lmaybe

A more serious problem with Lmaybe is that it gives inconsistent equations. Varying

Lmaybe with respect to ψ, one integrates the action by parts and finds

Lmaybe = ψ†(iγµ∂µ −m)ψ =⇒
ψ†(−iγµ←−∂ µ −m) = 0 .

(115)

To compare with the usual Dirac equation, we have to take the complex conjugate
(or adjoint) of this equation. To do this we need to compute (γµ)†. For our
conventions

γ0 =
 0 1

1 0

 γi =
 0 σi

−σi 0

 . (116)
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One sees that (
γ0

)†
= γ0

(
γi

)†
= −γi . (117)

These signs are actually dictated by the original Dirac anticommutation relations
{γµ , γν} = 2gµν . These imply that (γ0)2 = 1, and (γi)2 = −1, so they must
be hermitian and antihermitian respectively. The anticommutation relations also
imply that γµ and γν anticommute when µ 
= ν. Thus we can write for all µ that:

γ0 (γµ)† γ0 = γµ . (118)

So, taking the adjoint of Eq. (115),

0 =
[
ψ†(−iγµ←−∂ µ −m)

]†
=

(
i (γµ)† ∂µ −m

)
ψ = (iγ0γµγ0 −m)ψ .

(119)
This is not the Dirac equation.

Note that this is a counterexample to the widely believed falsehood that equations
derived from a Lagrangian are necessarily consistent.
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Reality of Lmaybe

Root Problem: Lmaybe is not real.

To understand, think about minimizing a function of a complex vector (z1, . . . , zN ):

L = z∗aM
ab zb ,

where Mab is a matrix. We can vary with respect to z or z∗ by defining

∂̄za
≡ 1

2

(
∂

∂ Re za
− i

∂

∂ Im za

)

∂̄z∗a ≡
1
2

(
∂

∂ Re za
+ i

∂

∂ Im za

)
.
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Setting
∂z∗aL = 0 =⇒ Mab zb = 0 ,

and setting
∂za

L = 0 =⇒ z∗a M
ab = 0 .

These two equations are consistent if and only if Mab is hermitian, Mab ∗ =
M ba. This is also the condition that L be real.

Trying to make a complex L stationary is like trying to make two Lagrangians —
i.e., the real and imaginary parts — stationary at the same time. It will usually
be inconsistent.
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Fixing the Dirac Lagrangian

To cure the problem, introduce a factor of γ0 to cancel the γ0’s we found in
Eq. (119): [

ψ†(−iγµ←−∂ µ −m)
]†

= (iγ0γµγ0 −m)ψ .

Let us try

LDirac = ψ̄ (iγµ∂µ −m)ψ , (120)

where

ψ̄(x) = ψ†(x) γ0
(
ψ̄a(x) = ψ†

b(x) γ0
ba

)
. (121)
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Then we can show that the action S is real:

S† =
∫

d4x
[
ψ̄ (iγµ∂µ −m)ψ

]† =
∫

d4x
[
ψ† γ0 (iγµ ∂µ −m)ψ

]†
.

Integrating by parts,

S† =
∫

d4x
[
ψ† γ0

(
−iγµ←−∂ µ −m

)
ψ

]†

=
∫

d4xψ† (
iγµ† ∂µ −m

)
γ0 ψ

=
∫

d4xψ† γ0
(
iγ0 γµ† γ0 ∂µ −m

)
ψ

=
∫

d4x ψ̄ (iγµ ∂µ −m)ψ = S .

(122)
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Note that in the last line we used Eq. (118), γ0 (γµ)† γ0 = γµ.

Similarly we can show that the equations of motion are now consistent, since the
equation obtained by varying ψ is

ψ̄
(
−iγµ←−∂ µ −m

)
= 0 . (122)

The adjoint of this equation is

0 =
[
ψ̄

(
−iγµ←−∂ µ −m

)]†
=

(
iγµ†∂µ −m

)
γ0†ψ

= γ0 γ0
(
iγµ†∂µ −m

)
γ0ψ

= γ0 (iγµ∂µ −m)ψ .

(123)

This is exactly the Dirac equation, multiplied by the (invertible) matrix γ0.
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Weyl Spinors

We already learned how to write the Dirac equation in 2× 2 blocks:

 −m iσ · ∂
iσ̄ · ∂ −m

ψL
ψR

 = 0 . (111)

For the special case of m = 0, the two pieces decouple, giving the Weyl
equations:

iσ̄ · ∂ψL = 0 , iσ · ∂ψR = 0 . (124)

ψL(x) and ψR(x) are called Weyl fields. Since σ2 σ̄µ∗ σ2 = σµ, one can define

χR = σ2ψ†
R =⇒ iσ̄ · ∂χR = 0 . (125)
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The Weyl fields can be extracted from the Dirac field by defining

γ5 ≡ i γ0 γ1 γ2 γ3

= − i

4!
εµνλσ γ

µ γν γλ γσ ,
(126)

where εµνλσ is the fully antisymmetric Levi-Civita tensor, with the sign convention
(following P&S)

ε0123 = −1 . (127)

Note that this corresponds to ε0123 = 1. γ5 is Lorentz-invariant, which one can see
by using the fact that εµνλσ is Lorentz-invariant, or by noting that

[
Sµν , γ5

]
= 0 . (128)

where Sµν are the generators of Lorentz transformations defined in Eq. (45).
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In our conventions

γ5 =
(−1 0

0 1

)
, (129)

which clearly separates the upper and lower halves of the Dirac field:

1
2
(1 + γ5)ψ =

(
0 0
0 1

) (
ψL
ψR

)
=

(
0
ψR

)

1
2
(1− γ5)ψ =

(
1 0
0 0

) (
ψL
ψR

)
=

(
ψL
0

)
.

(130)

For all choices of γ-matrices, γ5 is defined by Eq. (126); it is Lorentz-invariant,
and can be used to project L and R components of ψ (which are defined by the
( 1
2 , 0) + (0, 1

2 ) decomposition, but need not be the upper and lower pieces of ψ).
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Behavior of Weyl (massless) spinors:

Recall that

us(�p) =
√p · σ ξs√

p · σ̄ ξs

 , vs(�p) =
 √

p · σ(−iσ2 ξs)
−√p · σ̄(−iσ2 ξs)

 .

For m = 0 we can consider the case pµ = (E, 0, 0, E), and we recall that
σµ = (1, σi) and σ̄µ = (1,−σi). Then

p · σ = p0 − p3σz = E(1− σz) = 2EP− ,

where P− = 1
2(1 − σz) is the projector onto σz = −1 states, or equivalently

the projector onto negative helicity states. Similarly, p · σ̄ = 2EP+, where P+

projects onto σz = 1, or positive helicity states. Since σ2 anticommutes with
σ3, one has P+σ2 = σ2P−, and P−σ2 = σ2P+. Putting all this together,

us(�p) =
√

2E
P− ξs

P+ ξs

 , vs(�p) = −i
√

2E
 σ2 P+ ξs

−σ2 P− ξs

 .

(131)
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us(�p) =
√

2E
P− ξs

P+ ξs

 , vs(�p) = −i
√

2E
 σ2 P+ ξs

−σ2 P− ξs

 . (131)

Recall that

ψa(x) =
∫

d3p

(2π)3
1√
2E�p

∑
s

{
as(�p) usa(�p) e−ipµx

µ

+ b†s(�p) vsa(�p) eipµx
µ
}

,

so one sees that for massless particles the upper components, ψL, destroy negative
helicity particles (as destroys particles), and creates positive helicity antiparticles.
For ψR it is the reverse.

For m = 0, one can have a theory with just negative helicity particles have
and positive helicity antiparticles, or vice versa. One could have particles
of both helicities, but there is no need for both to build a Lorentz-invariant
field theory.
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The Dirac Hamiltonian

The Dirac Lagrangian was given as Eq. (120),

LDirac = ψ̄ (i γµ ∂µ −m)ψ .

Following the canonical procedure,

π =
∂L

∂ψ̇
= iψ† , and H =

∫
d3x

(
π ψ̇ − L

)
. (132)

Being careful with the signs,

i γµ ∂µ = i
(
γ0 ∂0 + γi ∂i

)
= i

(
γ0 ∂0 + �γ · �∇

)
.

Then

H =
∫

d3x ψ̄
(
−i�γ · �∇+ m

)
ψ . (133)
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H =
∫

d3x ψ̄
(
−i�γ · �∇+ m

)
ψ . (133)

Expanding the field, as in Eq. (92),

ψa(�x, 0) =
∫

d3p

(2π)3
1√
2E�p

∑
s

{
as(�p) usa(�p) e−ipµx

µ

+ b†s(�p) vsa(�p) eipµx
µ
}∣∣∣
t=0

=
∫

d3p

(2π)3
1√
2E�p

∑
s

{
as(�p) usa(�p) + b†s(−�p) vsa(−�p)

}
ei�p ·�x .

Inserting into Eq. (133),

H =
∫

d3x

∫
d3p

(2π)3
1√
2E�p

∫
d3q

(2π)3
1√
2E�q
×

×
∑
rs

{
a†s(�p) ūs(�p) + bs(−�p) v̄s(−�p)

}
e−i�p ·�x

×
[
−i�γ · �∇+ m

] {
ar(�q )ur(�q ) + b†r(−�q )vr(−�q )

}
ei�q ·�x .
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H =
∫

d3x

∫
d3p

(2π)3
1√
2E�p

∫
d3q

(2π)3
1√
2E�q
×

×
∑
rs

{
a†s(�p) ūs(�p) + bs(−�p) v̄s(−�p)

}
e−i�p ·�x

×
[
−i�γ · �∇+ m

] {
ar(�q )ur(�q ) + b†r(−�q )vr(−�q )

}
ei�q ·�x .

One can replace −i�γ · �∇ by �γ ·�q , and then integrate over �x , obtaining a δ(�p −�q )
which can be used to integrate over q:

H =
∫

d3p

(2π)3
1

2E�p

∑
rs

{
a†s(�p) ūs(�p) + bs(−�p) v̄s(−�p)

}
× [�γ · �p + m]

{
ar(�p)ur(�p) + b†r(−�p)vr(−�p)

}
.
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H =
∫

d3p

(2π)3
1

2E�p

∑
rs

{
a†s(�p) ūs(�p) + bs(−�p) v̄s(−�p)

}
× [�γ · �p + m]

{
ar(�p)ur(�p) + b†r(−�p)vr(−�p)

}
.

Now use

(γ · p) us(�p) = mus(�p) , (γ · p) vs(�p) = −mvs(�p) ,

and

u†
r(�p) us(�p) = 2E�p δrs v†r(�p) vs(�p) = 2E�p δrs

u†
r(�p) vs(−�p) = 0 v†r(�p) us(−�p) = 0

to obtain

H =
∫

d3p

(2π)3
E�p

∑
s

{
a†s(�p) as(�p)− bs(−�p) b†s(−�p)

}
.
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H =
∫

d3p

(2π)3
E�p

∑
s

{
a†s(�p) as(�p)− bs(−�p) b†s(−�p)

}
.

Now use �p → −�p in 2nd term, and reverse the order of the b and b†, using Eq. (97):{
bs(�p) , b†r(�q )

}
= (2π)3 δrsδ(3)(�p −�q ) .

H =
∫

d3p

(2π)3
E�p

∑
s

{
a†s(�p) as(�p) + b†s(�p) bs(�p)

}
+ Evac , (134)

where

Evac = −2
∫

d3pE�p δ(3)(�0) = −2
∫

d3p

(2π)3
E�p × Volume of space , (135)

where I am using

δ(3)(�p) =
∫

d3x

(2π)3
ei�p ·�x .
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H =
∫

d3p

(2π)3
E�p

∑
s

{
a†s(�p) as(�p) + b†s(�p) bs(�p)

}
+ Evac , (134)

where

Evac = −2
∫

d3pE�p δ(3)(�0) = −2
∫

d3p

(2π)3
E�p × Volume of space . (135)

Note that Fermi statistics caused the antiparticle energy to be positive (good!),
and the vacuum energy to be negative (surprising?). The negative vacuum energy,
although ill-defined, is still welcome: allows at least the hope that one might
get the positive (bosonic) contributions to cancel against the negative (fermionic)
contributions, giving an answer that is finite and hopefully small. Note that if we
had 4 free scalar fields with the same mass, the cancelation would be exact: this
is what happens in EXACTLY supersymmetric models, but it is spoiled as soon as
the supersymmetry is broken.
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Dirac Hole Theory

Electron-positron pair creation Electron-positron pair annihilation

In the 1-particle quantum mechanics formulation, positrons show up as negative
energy states. Dirac proposed that in the vacuum, the negative energy “sea”
was filled. Physical positrons, in this view, are holes in the Dirac sea. In QFT,
on the other hand, particles and antiparticles are on equal footing. Nonetheless,
the Dirac sea allows an intuitive way to understand the negative vacuum energy.
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The Dirac Propagator

This is straightforward, so I will only summarize the results.

〈
0

∣∣ψa(x) ψ̄b(y)
∣∣0〉

=
∫

d3p

(2π)3
1

2E�p

∑
s

usa(�p) ūsb(�p) e−ip·(x−y)

= (i 
∂x + m)ab
∫

d3p

(2π)3
1

2E�p
e−ip·(x−y)

= (i 
∂x + m)abD(x− y)

〈
0

∣∣ψ̄b(x)ψa(y)
∣∣0〉

=
∫

d3p

(2π)3
1

2E�p

∑
s

vsa(�p) v̄sb(�p) e−ip·(y−x)

= −(i 
∂x + m)abD(y − x) ,

(136)

where 
∂ = γµ ∂µ and D(x) is the scalar 2-point function 〈0 |φ(x)φ(0)| 0〉 .
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The Retarded Dirac Propagator

SabR (x− y) ≡ θ(x0 − y0)
〈
0

∣∣ψa(x) ψ̄b(y)
∣∣0〉

= (i 
∂x + m)DR(x− y) ,
(137)

where DR(x− y) is the scalar retarded propagator. One can show

(i 
∂x −m)SR(x− y) = iδ(4)(x− y) · 14×4 . (138)

The Fourier expansion is

SR(x) =
∫

d4p

(2π)4
e−ip·x S̃R(p) , where S̃R(p) =

i( 
p + m)
(p0 + iε)2 − |�p |2 −m2

.

(139)
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The Feynman Propagator

SF (x− y) ≡
{ 〈

0
∣∣ψ(x) ψ̄(y)

∣∣ 0〉
for x0 > y0

− 〈
0

∣∣ψ̄(y)ψ(x)
∣∣0〉

for y0 > x0

≡ 〈
0

∣∣T {
ψ(x) ψ̄(y)

}∣∣ 0
〉

.

(140)

The Feynman propagator also satisfies Eq. (138). The Fourier expansion is

SF (x) =
∫

d4p

(2π)4
e−ip·x S̃F (p) , where S̃F (p) =

i( 
p + m)
p2 −m2 + iε

. (141)
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