MASSACHUSETTS INSTITUTE OF TECHNOLOGY Physics Department

8.323: Relativistic Quantum Field Theory I

Prof. Alan Guth March 13, 2008

PROBLEM SET 5

DUE DATE: Thurday, March 20, 2008, at 5:00 p.m. in the 8.323 homework box, at the intersection of the 3rd floor of building 8 and the 4th floor of building 16.

REFERENCES: Lecture Notes #4: Dirac Delta Function as a Distribution, on the website. Peskin and Schroeder, Sec. 2.4; Optional reference: Quantum Field Theory, by Lowell Brown, section 1.7 (coherent states).

Problem 1: Subtleties of delta functions (10 points)

(a) Consider $g_1(t)$ and $g_2(t)$ defined by

$$g_1(t) \equiv f(t) \,\delta(t-a) \tag{1.1}$$

and

$$g_2(t) \equiv f(a) \,\delta(t-a) \,\,, \tag{1.2}$$

where f(t) is an arbitrary smooth function, a is a constant, and δ denotes the Dirac delta function. By "smooth," I mean that f(t) is continuous, and differentiable as many times as might be necessary for any issue that arises. Note that $g_1(t)$ and $g_2(t)$ are distributions, defined more explicitly as

$$T_{g_i}[\varphi] \equiv \int_{-\infty}^{\infty} dt \, g_i(t) \, \varphi(t) \,,$$
 (1.3)

where $\varphi(t)$ is a test function. By evaluating the functionals shown in Eq. (1.3) for an arbitrary allowed test function, find out if $g_1(t)$ and $g_2(t)$ are equal to each other as distributions.

(b) Using a prime to indicate that a function is differentiated with respect to its argument, consider the distributions $h_1(t)$ and $h_2(t)$ defined by

$$h_1(t) \equiv f(t) \,\delta'(t-a) \tag{1.4}$$

and

$$h_2(t) \equiv f(a) \,\delta'(t-a) \,\,, \tag{1.5}$$

where again f(t) is an arbitrary smooth function and δ denotes the Dirac delta function. The derivative of a distribution was defined in Lecture Notes 4. By

evaluating these two distributions for an arbitrary allowed test function $\varphi(t)$, find out if they are equal to each other as distributions.

(c) Now consider the derivatives of the distributions defined above in Eqs. (1.1) and (1.2):

$$g_1'(t) = f'(t) \,\delta(t-a) + f(t)\delta'(t-a) \tag{1.6}$$

and

$$g_2'(t) = f(a)\delta'(t-a)$$
 (1.7)

<u>IF</u> you concluded that $g_1(t)$ and $g_2(t)$ are equal, then you should certainly expect that their derivatives should be equal, even if they do not appear to be identical. Find out if $g'_1(t)$ and $g'_2(t)$ are equal.

(d) Let the function $\theta(t)$ be defined in the standard way,

$$\theta(t) = \begin{cases} 1 & \text{if } t > 0\\ 0 & \text{otherwise,} \end{cases}$$
 (1.8)

and consider the corresponding distribution

$$T_{\theta}[\varphi] \equiv \int_{-\infty}^{\infty} \mathrm{d}t \, \theta(t) \, \varphi(t) \, .$$
 (1.9)

Define the derivative of a θ -function as a distribution, so

$$\int_{-\infty}^{\infty} dt \, \theta'(t) \, \varphi(t) \equiv T'_{\theta}[\varphi] \equiv -T_{\theta} \left[\frac{d\varphi}{dt} \right] . \tag{1.10}$$

Show that

$$\theta'(t) = \delta(t) . (1.11)$$

[Warning: The product of two distributions cannot be defined in general, nor can the square of a distribution. As a function, it is clear from the definition (1.8) that

$$\theta^n(t) = \theta(t) , \qquad (1.12)$$

where n denotes any positive integer. Any function that is piecewise continuous and bounded by a power can be promoted to a corresponding distribution, so $T_{\theta}[\varphi]$ and $T_{\theta^n}[\varphi]$ are both well-defined distributions and are equal to each other. One might conjecture that

$$\frac{\mathrm{d}}{\mathrm{d}t}\,\theta(t) = \delta(t) \,\,, \tag{1.13a}$$

$$\frac{\mathrm{d}}{\mathrm{d}t} \theta^2(t) = 2 \theta(t) \delta(t) , \qquad (1.13b)$$

and

$$\frac{\mathrm{d}}{\mathrm{d}t}\,\theta^3(t) = 3\,\theta^2(t)\,\delta(t) \ . \tag{1.13c}$$

Eq. (1.13a) is identical to Eq. (1.11) and is correct, but the right-hand sides of Eqs. (1.13b) and (1.13c) are ill-defined. Since $\theta^n(t) = \theta(t)$, the left-hand sides of Eqs. (1.13a) – (1.13c) are all well-defined and are equal to each other. It is hard to imagine any consistent definition that would make the right-hand sides equal, so the standard approach is to consider them undefined.]

Problem 2:
$$(\Box_x + m^2) D_F(x - y) = -i\delta^{(4)}(x - y)$$
 (10 points)

The Feynman propagator for a free scalar field $\phi(x)$ is defined by

$$D_F(x-y) = \theta(x^0 - y^0) \langle 0 | \phi(x) \phi(y) | 0 \rangle + \theta(y^0 - x^0) \langle 0 | \phi(y) \phi(x) | 0 \rangle ,$$

where $|0\rangle$ denotes the vacuum state. Use the canonical commutation relations to show that

$$(\Box_x + m^2) D_F(x - y) = -i\delta^{(4)}(x - y)$$
,

where

$$\square_x \equiv \eta^{\mu\nu} \, \frac{\partial}{\partial x^\mu} \frac{\partial}{\partial x^\nu} \; .$$

[Suggestion: First calculate

$$\frac{\partial}{\partial x^0} D_F(x-y) ,$$

and then differentiate this expression again to find

$$\frac{\partial^2}{\partial (x^0)^2} D_F(x-y) .$$

Then add in the other terms to find the final answer.

Problem 3: Coherent states (15 points)

In lecture we solved the problem of a quantized scalar field $\phi(x)$ interacting with a fixed classical source j(x),

$$(\Box + m^2)\phi(x) = j(x) .$$

We found that the in and out operators are related by

$$\phi_{\text{out}}(x) = S^{-1} \phi_{\text{in}}(x) S$$

$$a_{\rm out}(\vec{p}) = S^{-1} a_{\rm in}(\vec{p}) S$$
,

where S can be written

$$S = e^{-\frac{1}{2} \int \frac{d^3 p}{(2\pi)^3} \frac{1}{2E_p} |\tilde{\jmath}(p)|^2} e^F e^G ,$$

where

$$F = \int \frac{\mathrm{d}^3 p}{(2\pi)^3} \frac{1}{\sqrt{2E_p}} \tilde{\jmath}(p) \, a_{\mathrm{in}}^{\dagger}(\vec{p})$$
$$G = \int \frac{\mathrm{d}^3 p}{(2\pi)^3} \frac{1}{\sqrt{2E_p}} \tilde{\jmath}(-p) \, a_{\mathrm{in}}(\vec{p}) ,$$

and

$$\tilde{\jmath}(p) \equiv \int \mathrm{d}^4 y \, e^{ip \cdot y} j(y) \; .$$

(a) Show that S can also be written as

$$S = e^{-\frac{1}{2} \int \frac{d^3 p}{(2\pi)^3} \frac{1}{2E_p} |\tilde{\jmath}(p)|^2} e^{F'} e^{G'}.$$

where

$$F' = \int \frac{\mathrm{d}^3 p}{(2\pi)^3} \frac{1}{\sqrt{2E_p}} \tilde{\jmath}(p) \, a_{\text{out}}^{\dagger}(\vec{p})$$
$$G' = \int \frac{\mathrm{d}^3 p}{(2\pi)^3} \frac{1}{\sqrt{2E_p}} \tilde{\jmath}(-p) \, a_{\text{out}}(\vec{p}) ,$$

and hence that

$$|0_{\rm in}\rangle = e^{-\frac{1}{2}\int \frac{{\rm d}^3 p}{(2\pi)^3} \frac{1}{2E_p} |\tilde{\jmath}(p)|^2} e^{F'} |0_{\rm out}\rangle$$
.

Note that the right-hand-side of the above equation gives a useful description of the final state, since the out operators have a straightforward interpretation at late times. States of this form — exponentials of creation operators acting on the vacuum — are called coherent states.

(b) To study further the properties of coherent states, it is useful to consider a single harmonic oscillator,

$$H = \frac{p^2}{2m} + \frac{\omega^2 m}{2} q^2 ,$$

which is simplified by the canonical transformation

$$p = \sqrt{m\omega} \, \bar{p} \; , \quad q = \frac{1}{\sqrt{m\omega}} \, \bar{q} \; .$$

Dropping the overbars, the creation and annihilation operators are then given by

$$a^{\dagger} = \frac{1}{\sqrt{2}}(q - ip)$$

$$a = \frac{1}{\sqrt{2}}(q + ip) .$$

A coherent state $|z\rangle$ can be defined by

$$|z\rangle \equiv e^{za^{\dagger}} |0\rangle .$$

Show that $|z\rangle$ is an eigenstate of the annihilation operator, and find its eigenvalue.

- (c) Show that $\langle z_2 | z_1 \rangle = e^{z_2^* z_1}$. (If you look at Lowell Brown's book, note that I am defining $\langle z |$ to be the bra vector that corresponds to the ket $|z\rangle$, so my $\langle z |$ is equal to Brown's $\langle z^* | .$)
- (d) Find

$$\langle q \rangle_z \equiv \frac{\langle z \, | q | \, z \rangle}{\langle z \, | z \, \rangle}$$

and

$$\langle p \rangle_z \equiv \frac{\langle z | p | z \rangle}{\langle z | z \rangle} \ .$$

(e) Compute the standard deviations of q and p,

$$\Delta q^2 = \left\langle (q - \langle q \rangle)^2 \right\rangle$$

$$\Delta p^2 = \langle (p - \langle p \rangle)^2 \rangle$$

and show that $|z\rangle$ is a minimal-uncertainty state, in the sense that

$$\Delta q \, \Delta p = \frac{1}{2} \ .$$