8.323: Relativistic Quantum Field Theory I

Prof. Alan Guth February 29, 2008

PROBLEM SET 1 SOLUTIONS

Problem 1: The energy-momentum tensor for source-free electrodynamics ${\bf e}_{\bf k}$

(a) We have the following action

$$S = \int d^4x \, \mathcal{Q} = \int d^4x \left(-\frac{1}{4} F_{\mu\nu} F^{\mu\nu} \right), \qquad F_{\mu\nu} = \partial_{\mu} A_{\nu} - \partial_{\nu} A_{\mu} . \tag{1.1}$$

Before deriving the equations of motions from it, let us note that $F_{\mu\nu}$ is anti-symmetric: $F_{\mu\nu} = -F_{\nu\mu}$, and

$$\frac{\partial F_{\rho\sigma}}{\partial(\partial_{\mu}A_{\nu})} = \delta^{\mu}_{\rho}\delta^{\nu}_{\sigma} - \delta^{\nu}_{\rho}\delta^{\mu}_{\sigma} . \tag{1.2}$$

The Euler-Lagrange equations then become

$$0 = \partial_{\mu} \frac{\partial \mathcal{G}}{\partial(\partial_{\mu} A_{\nu})} - \frac{\partial \mathcal{G}}{\partial A_{\nu}} = \partial_{\mu} \frac{\partial \mathcal{G}}{\partial(\partial_{\mu} A_{\nu})}$$

$$= \partial_{\mu} \left(\frac{\partial \mathcal{G}}{\partial F_{\rho\sigma}} \frac{\partial F_{\rho\sigma}}{\partial(\partial_{\mu} A_{\nu})} \right)$$

$$= \partial_{\mu} \left(-\frac{1}{2} F^{\rho\sigma} (\delta^{\mu}_{\rho} \delta^{\nu}_{\sigma} - \delta^{\nu}_{\rho} \delta^{\mu}_{\sigma}) \right)$$

$$= -\partial_{\mu} F^{\mu\nu} . \tag{1.3}$$

We thus get $\partial_{\mu}F^{\mu\nu}=0$, which is nothing other than the inhomogeneous Maxwell equations with no source. If we now set $\nu=0$ in Eq. (1.3), we get $0=\partial_{i}F^{i0}=\partial_{i}E^{i}$, where i=1,2,3. Thus

$$\vec{\nabla} \cdot \vec{E} = 0 \ . \tag{1.4}$$

And if we set $\nu = j$ in Eq. (1.3), we have $0 = \partial_0 F^{0j} + \partial_i F^{ij} = -\partial_t E^j - \partial_i \epsilon^{ijk} B^k = -\partial_t E^j + (\vec{\nabla} \times \vec{B})^j$. Thus

$$\vec{\nabla} \times \vec{B} - \partial_t \vec{E} = 0 \ . \tag{1.5}$$

8.323 PROBLEM SET 1 SOLUTIONS, SPRING 2008

Note added: To find the homogeneous Maxwell equations, one can use the dual field tensor ${}^*F^{\mu\nu} \equiv \frac{1}{2} \epsilon^{\mu\nu\rho\sigma} F_{\rho\sigma}$. Using the definition of $F_{\mu\nu}$, Eq. (1.1), we find that $\partial_{\mu} {}^*F^{\mu\nu} = \frac{1}{2} \epsilon^{\mu\nu\rho\sigma} \partial_{\mu} F_{\rho\sigma} = \frac{1}{2} \epsilon^{\mu\nu\rho\sigma} \partial_{\mu} (\partial_{\rho} A_{\sigma} - \partial_{\sigma} A_{\rho}) = 0$, due to the antisymmetry of $\epsilon^{\mu\nu\rho\sigma}$. Therefore, we get the Bianchi identity

$$\partial_{\mu} F^{\mu\nu} = 0 . \tag{1.6}$$

Moreover, we have ${}^*F^{0i}=\frac{1}{2}\epsilon^{0i\rho\sigma}F_{\rho\sigma}=\frac{1}{2}\epsilon^{ijk}F_{jk}=-\frac{1}{2}\epsilon^{ijk}\epsilon^{jk\ell}B^\ell=-B^i$, and ${}^*F^{ij}=\epsilon^{ijk0}F_{k0}=-\epsilon^{ijk0}E_k=\epsilon^{ijk}E_k$. In other words, ${}^*F^{\mu\nu}$ is obtained from $F^{\mu\nu}$ by the transformation $\vec{E}\to\vec{B}$ and $\vec{B}\to-\vec{E}$. Using Eq. (1.6) and repeating the steps that led to Eq. (1.4) and Eq. (1.5), we get the homogeneous Maxwell equations:

$$\vec{\nabla} \cdot \vec{B} = 0 \tag{1.7}$$

$$\vec{\nabla} \times \vec{E} + \partial_t \vec{B} = 0 . \tag{1.8}$$

(b) Under an infinitesimal translation $x^{\mu} \to x^{\mu} - a^{\mu}$, we have

$$A^{\mu}(x) \to A'^{\mu}(x) = A^{\mu}(x+a) = A^{\mu}(x) + a^{\nu}\partial_{\nu}A^{\mu}(x)$$
 (1.9)

$$\mathfrak{T}(x) \to \mathfrak{T}(x) + a^{\mu} \partial_{\mu} \mathfrak{T}(x) = \mathfrak{T}(x) + a^{\nu} \partial_{\mu} \left(\delta^{\mu}_{\nu} \mathfrak{T}(x) \right) . \tag{1.10}$$

From Eq. (1.9), we have

$$\Delta \mathcal{G} = \frac{\partial \mathcal{G}}{\partial (\partial_{\mu} A_{\lambda})} \Delta (\partial_{\mu} A_{\lambda}) = -F^{\mu \lambda} a^{\nu} \partial_{\mu} \partial_{\nu} A_{\lambda} = a^{\nu} \partial_{\mu} \left(-F^{\mu \lambda} \partial_{\nu} A_{\lambda} \right) , \quad (1.11)$$

where we used the EOM for $F^{\mu\nu}$. Comparing Eqs. (1.10) and (1.11), we see that $\partial_{\mu} \left(-F^{\mu\lambda} \partial_{\nu} A_{\lambda} - \delta^{\mu}_{\nu} \mathcal{L} \right) = 0$, and the energy-momentum tensor is thus

$$T^{\mu}_{\ \nu} = -F^{\mu\lambda}\partial_{\nu}A_{\lambda} - \delta^{\mu}_{\ \nu}\mathcal{Q} \ . \tag{1.12}$$

This is manifestly not symmetric in μ , ν ; but we can nevertheless construct a symmetric energy-momentum tensor $\hat{T}^{\mu\nu} = T^{\mu\nu} + \partial_{\lambda}K^{\lambda\mu\nu}$, where $K^{\lambda\mu\nu}$ is antisymmetric in its first two indices, so that $\partial_{\mu}\partial_{\lambda}K^{\lambda\mu\nu} = 0$. Let us choose $K^{\lambda\mu\nu} = F^{\mu\lambda}A^{\nu}$ so that

$$\hat{T}^{\mu\nu} = -F^{\mu\lambda}\partial^{\nu}A_{\lambda} - g^{\mu\nu}\mathcal{L} + F^{\mu\lambda}\partial_{\lambda}A^{\nu}
= F^{\mu\lambda}F_{\lambda}{}^{\nu} - g^{\mu\nu}\mathcal{L} .$$
(1.13)

This is manifestly symmetric.

p. 2

Written in terms of electric and magnetic fields, this becomes

$$\mathcal{E} \equiv \hat{T}^{00} = F^{0\lambda} F_{\lambda}^{0} - \mathcal{L} = E^{2} - \frac{1}{2} (E^{2} - B^{2}) = \frac{1}{2} (E^{2} + B^{2})$$
 (1.14)

$$S_i \equiv \hat{T}^{0i} = F^{0j} F_i^{\ i} = -E^j (-\epsilon^{ijk} B^k) = (\vec{E} \times \vec{B})_i \ . \tag{1.15}$$

(c) The transformation,

$$A^{\mu}(x) \to A'^{\mu}(x) = A^{\mu}(x) + a^{\nu} F_{\nu}^{\ \mu}(x)$$

= $A^{\mu}(x) + a^{\nu} \partial_{\nu} A^{\mu}(x) - \partial^{\mu}(a^{\nu} A_{\nu}(x))$ (1.16)

is equivilent to a coordinate transformation as before, and a gauge transformation,

$$A^{\mu}(x) \to \tilde{A}^{\mu}(x) = A^{\mu}(x) + a^{\nu}\partial_{\nu}A^{\mu}(x) \tag{1.17}$$

$$\tilde{A}^{\mu} \to A^{\prime \mu}(x) = \tilde{A}^{\mu}(x) + \partial^{\mu}\phi ,$$
 (1.18)

where $\phi(x) = -a^{\nu}A_{\nu}(x)$.

As \mathcal{L} is gauge invariant, \mathcal{L} transforms as before in Eq. (1.10). Now apply Noether's Theorem,

$$j^{\mu} = a_{\nu} T^{\mu\nu} = \frac{\partial \mathcal{G}}{\partial (\partial_{\mu} A_{\lambda})} a_{\nu} F^{\nu}_{\lambda} - a^{\mu} \mathcal{G}$$
 (1.19)

$$T^{\mu\nu} = -F^{\mu\lambda}F^{\nu}_{\lambda} - g^{\mu\nu} \mathcal{G} \tag{1.20}$$

Problem 2: Waves on a string

p. 3

$$\begin{aligned}
& = \left(\frac{\partial x}{\partial x} \left(\frac{\partial y}{\partial t} \right)^2 - \frac{1}{2} \left(\frac{\partial y}{\partial x} \right)^2 \right) \\
& = \left(\frac{\partial x}{\partial x} \left(\frac{\partial y}{\partial t} \right)^2 - \frac{1}{2} \left(\frac{\partial y}{\partial x} \right)^2 \right) \\
& = \frac{\partial x}{\partial x} \left(\frac{\partial x}{\partial (\partial_x y)} \right) = \frac{\partial x}{\partial y} \\
& = \frac{\partial x}{\partial y} \left(\frac{\partial x}{\partial (\partial_x y)} \right) + \frac{\partial x}{\partial x} \left(\frac{\partial x}{\partial (\partial_x y)} \right) = 0 \\
& = \frac{\partial^2 y}{\partial x^2} - \frac{\partial^2 y}{\partial x^2} = 0 \\
& = \frac{\partial^2 y}{\partial x^2} - \frac{\partial^2 y}{\partial x^2} = 0 \\
& = \frac{\partial^2 y}{\partial x^2} - \frac{\partial^2 y}{\partial x^2} = 0 \\
& = \frac{\partial^2 y}{\partial x^2} - \frac{\partial^2 y}{\partial x^2} = 0 \\
& = \frac{\partial^2 y}{\partial x^2} - \frac{\partial^2 y}{\partial x^2} = 0 \\
& = \frac{\partial^2 y}{\partial x^2} - \frac{\partial^2 y}{\partial x^2} = 0 \\
& = \frac{\partial^2 y}{\partial x^2} - \frac{\partial^2 y}{\partial x^2} = 0 \\
& = \frac{\partial^2 y}{\partial x^2} - \frac{\partial^2 y}{\partial x^2} = 0 \\
& = \frac{\partial^2 y}{\partial x^2} - \frac{\partial^2 y}{\partial x^2} = 0 \\
& = \frac{\partial^2 y}{\partial x^2} - \frac{\partial^2 y}{\partial x^2} = 0 \\
& = \frac{\partial^2 y}{\partial x^2} - \frac{\partial^2 y}{\partial x^2} = 0 \\
& = \frac{\partial^2 y}{\partial x^2} - \frac{\partial^2 y}{\partial x^2} = 0 \\
& = \frac{\partial^2 y}{\partial x^2} - \frac{\partial^2 y}{\partial x^2} = 0 \\
& = \frac{\partial^2 y}{\partial x^2} - \frac{\partial^2 y}{\partial x^2} = 0 \\
& = \frac{\partial^2 y}{\partial x^2} - \frac{\partial^2 y}{\partial x^2} = 0 \\
& = \frac{\partial^2 y}{\partial x^2} - \frac{\partial^2 y}{\partial x^2} = 0 \\
& = \frac{\partial^2 y}{\partial x^2} - \frac{\partial^2 y}{\partial x^2} = 0 \\
& = \frac{\partial^2 y}{\partial x^2} - \frac{\partial^2 y}{\partial x^2} = 0 \\
& = \frac{\partial^2 y}{\partial x^2} - \frac{\partial^2 y}{\partial x^2} = 0 \\
& = \frac{\partial^2 y}{\partial x^2} - \frac{\partial^2 y}{\partial x^2} = 0 \\
& = \frac{\partial^2 y}{\partial x^2} - \frac{\partial^2 y}{\partial x^2} = 0 \\
& = \frac{\partial^2 y}{\partial x^2} - \frac{\partial^2 y}{\partial x^2} = 0 \\
& = \frac{\partial^2 y}{\partial x^2} - \frac{\partial^2 y}{\partial x^2} = 0 \\
& = \frac{\partial^2 y}{\partial x^2} - \frac{\partial^2 y}{\partial x^2} = 0 \\
& = \frac{\partial^2 y}{\partial x^2} - \frac{\partial^2 y}{\partial x^2} = 0 \\
& = \frac{\partial^2 y}{\partial x^2} - \frac{\partial^2 y}{\partial x^2} = 0 \\
& = \frac{\partial^2 y}{\partial x^2} - \frac{\partial^2 y}{\partial x^2} = 0 \\
& = \frac{\partial^2 y}{\partial x^2} - \frac{\partial^2 y}{\partial x^2} = 0 \\
& = \frac{\partial^2 y}{\partial x^2} - \frac{\partial^2 y}{\partial x^2} = 0 \\
& = \frac{\partial^2 y}{\partial x^2} - \frac{\partial^2 y}{\partial x^2} = 0 \\
& = \frac{\partial^2 y}{\partial x^2} - \frac{\partial^2 y}{\partial x^2} = 0 \\
& = \frac{\partial^2 y}{\partial x^2} - \frac{\partial^2 y}{\partial x^2} = 0 \\
& = \frac{\partial^2 y}{\partial x^2} - \frac{\partial^2 y}{\partial x^2} = 0 \\
& = \frac{\partial^2 y}{\partial x^2} - \frac{\partial^2 y}{\partial x^2} = 0 \\
& = \frac{\partial^2 y}{\partial x^2} - \frac{\partial^2 y}{\partial x^2} = 0 \\
& = \frac{\partial^2 y}{\partial x^2} - \frac{\partial^2 y}{\partial x^2} = 0 \\
& = \frac{\partial^2 y}{\partial x^2} - \frac{\partial^2 y}{\partial x^2} = 0 \\
& = \frac{\partial^2 y}{\partial x^2} - \frac{\partial^2 y}{\partial x^2} = 0 \\
& = \frac{\partial^2 y}{\partial x^2} - \frac{\partial^2 y}{\partial x^2} = 0 \\
& = \frac{\partial^2 y}{\partial x^2} - \frac{\partial^2 y}{\partial x^2} =$$

Plug into eq. of motion
$$6 \sum_{n} \sin(n\pi x) \dot{q}_{n} + T \sum_{n} \sin(n\pi x) \frac{n^{2}\pi^{2}}{a^{2}} q_{n} = 0$$

$$50 \quad 6 \dot{q}_{n} + T \frac{n^{2}\pi^{2}}{a^{2}} q_{n} = 0$$
Alternately Plug into L

Problem 3: Fields with SO(3) symmetry

 $L = \underbrace{\mathcal{C}}_{2} \underbrace{dx}_{2} \underbrace{2}_{2} \underbrace{\sum_{n,m} (n\pi x) \sin(n\pi x)}_{n} \underbrace{\int_{n} q_{m}}_{n} \underbrace{\sum_{n,m} (n\pi x) \cos(n\pi x)}_{n} \underbrace{\int_{n} q_{m}}_{n} \underbrace{\int_{n} q_{$

Noether's Theorem for multiple fields of Dr -> Dr + 2 Dr R d Symmety if L > 1+ xb 2m) b Then Sh = 2 31 Dudu Do, K & - Dh Inte problem $L = \frac{1}{2} \partial_{\mu} \phi_{\alpha} \partial^{\mu} \phi_{\alpha} - \frac{1}{2} m^{2} \phi_{\alpha} \phi_{\alpha}$ Da -> Rabon RRT=1 For 3 fields, R has 3 parameters Φa = Φ + 80 Eabe Nb Φc NbNb=1 Unit vector in 3 dim 2 parametes Rotation angle 0 8 3 rd. Lis muniont Abad = Eabede 50 = 2 31 Eabe de

The = 2h pa Eabe de or it you prefer in = Eabe 2h pb de Check conservation

 $\mathcal{L} = \frac{1}{2} \partial_{\mu} \phi_{\alpha} \partial^{\mu} \phi_{\alpha} - V(\phi_{\alpha} \phi_{\alpha})$

ester-lagrange on Jupa = -2V'. pa

Voiling On ja = 0

On ja = Eabe (On Jab) pe + (abe Jab) on pe

= Eabe (-2V1) pp pe

+ (abe (2+ pp 2+ pe - 2x pp 2x pe -...)

= 0 since

Eabe VaVb=0

Problem 4: Lorentz transformations and Noether's theorem for scalar fields

(a) We are given

p. 7

$$x^{\prime \lambda} = x^{\lambda} - \Sigma^{\lambda}{}_{\sigma} x^{\sigma} , \qquad (4.1)$$

so lowering the index gives

$$x_{\lambda}' = x_{\lambda} - \Sigma_{\lambda\rho} x^{\rho} . \tag{4.2}$$

Then to first order in Σ ,

$$x^{\prime\lambda} x_{\lambda}^{\prime} = \left(x^{\lambda} - \Sigma^{\lambda}{}_{\sigma} x^{\sigma}\right) \left(x_{\lambda} - \Sigma_{\lambda\rho} x^{\rho}\right)$$

$$= x^{\lambda} x_{\lambda} - \Sigma^{\lambda}{}_{\sigma} x^{\sigma} x_{\lambda} - \Sigma_{\lambda\rho} x^{\lambda} x^{\rho}$$

$$= x^{\lambda} x_{\lambda} - \Sigma_{\lambda\sigma} x^{\sigma} x^{\lambda} - \Sigma_{\lambda\rho} x^{\lambda} x^{\rho} .$$

$$(4.3)$$

But the two terms in Σ each vanish due to the antisymmetry of $\Sigma_{\lambda\sigma}$, so we have $x'^{\lambda}x'_{\lambda}=x^{\lambda}x_{\lambda}$, as expected.

(b) According to Noether's theorem, if a field theory possesses a symmetry

$$\phi(x) \longrightarrow \phi'(x) = \phi(x) + \alpha^b \Delta \phi_b(x)$$
 (4.4)

under which the Lagrangian density \mathcal{L} is transformed by the addition of a total derivative,

$$\mathfrak{L}(x) \longrightarrow \mathfrak{L}'(x) = \mathfrak{L}(x) + \alpha^b \partial_\mu \mathcal{J}_b^\mu(x) , \qquad (4.5)$$

where α^b represents a set of infinitesimal constants, then the currents

$$j_b^{\mu}(x) = \frac{\partial \mathcal{Q}}{\partial (\partial_{\mu}\phi)} \Delta_b \phi - \mathcal{J}_b^{\mu} \tag{4.6}$$

are conserved:

$$\partial_{\mu} j_{b}^{\mu} = 0$$
, for each b . (4.7)

The Lorentz-invariance of the scalar field Lagrangian can be stated in this form, with $\alpha^b \leftrightarrow \Sigma^{\lambda\sigma}$, and $\Delta\phi_b(x) \leftrightarrow x_\sigma\partial_\lambda\phi(x)$. The Lagrangian density is a Lorentz scalar, so the tranformation acts only on the argument x of $\mathcal{L}(x)$:

$$\mathcal{G}'(x') = \mathcal{G}(x) , \qquad (4.8)$$

which implies that

$$\mathcal{G}'(x) = \mathcal{G}(x) + \Sigma^{\lambda\sigma} x_{\sigma} \partial_{\lambda} \mathcal{G}(x) , \qquad (4.9)$$

exactly like the scalar field. We can make contact with Noether's theorem by writing the second term above as

$$\Sigma^{\lambda\sigma} x_{\sigma} \partial_{\lambda} \mathcal{Y}(x) = \Sigma^{\lambda\sigma} \partial_{\mu} \left(x_{\sigma} \delta^{\mu}_{\lambda} \mathcal{Y}(x) \right) . \tag{4.10}$$

Thus

$$\alpha^{b} j_{b}^{\mu} = \Sigma^{\lambda \sigma} \left\{ \partial^{\mu} \phi x_{\sigma} \partial_{\lambda} \phi(x) - x_{\sigma} \delta_{\lambda}^{\mu} \mathcal{L} \right\} . \tag{4.11}$$

Since $\Sigma^{\lambda\sigma}$ is antisymmetric, it is only the part of the above expression that is antisymmetric in λ and σ that is required to obey the conservation equation. Thus, raising the λ and σ indices, a conserved current $j_1^{\mu\lambda\sigma}$ can be written as

$$j_1^{\mu\lambda\sigma} = x^{\sigma}\partial^{\mu}\phi\partial^{\lambda}\phi - x^{\lambda}\partial^{\mu}\phi\partial^{\sigma}\phi - (x^{\sigma}\eta^{\mu\lambda} - x^{\lambda}\eta^{\mu\sigma})\mathcal{L} . \tag{4.12}$$

Recalling that the energy-momentum tensor can be written as

$$T^{\mu\nu} = \partial^{\mu}\phi \partial^{\nu}\phi - \eta^{\mu\nu} \mathcal{G} , \qquad (4.13)$$

the conserved current can then be rewritten as

$$j_1^{\mu\lambda\sigma} = x^{\sigma} T^{\mu\lambda} - x^{\lambda} T^{\mu\sigma} . \tag{4.14}$$

This current differs from the one defined in the problem set by an overall sign, but of course any fixed multiple of a conserved current is also a conserved current. Hence, Noether's theorem implies also that

$$j^{\mu\lambda\sigma} \equiv -j_1^{\mu\lambda\sigma} = x^{\lambda}T^{\mu\sigma} - x^{\sigma}T^{\mu\lambda} \tag{4.15}$$

is conserved.

To verify that the equations of motion imply that the current in the box above is conserved, one can first check that $T^{\mu\nu}$ is conserved. The equations of motion are

$$\Box \phi \equiv \partial_{\mu} \partial^{\mu} \phi = -m^2 \phi , \qquad (4.16)$$

and

$$T^{\mu\nu} = \partial^{\mu}\phi\partial^{\nu}\phi - \frac{1}{2}\eta^{\mu\nu} \left[\partial_{\lambda}\phi\partial^{\lambda}\phi - m^{2}\phi^{2}\right] . \tag{4.17}$$

Then

$$\partial_{\mu}T^{\mu\nu} = \Box \phi \partial^{\nu}\phi + \partial^{\mu}\phi \partial_{\mu}\partial^{\nu}\phi - \partial^{\lambda}\phi \partial^{\nu}\partial_{\lambda}\phi + m^{2}\phi \partial^{\nu}\phi$$

$$= -m^{2}\partial^{\nu}\phi + \partial^{\mu}\phi \partial_{\mu}\partial^{\nu}\phi - \partial^{\lambda}\phi \partial^{\nu}\partial_{\lambda}\phi + m^{2}\phi \partial^{\nu}\phi$$

$$= 0.$$
(4.18)

It then follows that

p. 9

$$\partial_{\mu}j^{\mu\lambda\sigma} = \delta^{\lambda}_{\mu}T^{\mu\sigma} + x^{\lambda}\partial_{\mu}T^{\mu\sigma} - \delta^{\sigma}_{\mu}T^{\mu\lambda} - x^{\sigma}\partial_{\mu}T^{\mu\lambda}$$

$$= T^{\lambda\sigma} - T^{\sigma\lambda}$$

$$= 0.$$
(4.19)

That is, $j^{\mu\lambda\sigma}$ is conserved as long as $T^{\mu\nu}$ is both symmetric and conserved.

(c) The conservation of $j^{\mu\lambda\sigma}$ implies that the quantity

$$K^{i} \equiv \int \mathrm{d}^{3}x \, j^{00i}(\vec{x}) \tag{4.20}$$

is conserved. For clarity we can replace T^{00} by \mathcal{H} , the energy density, and T^{0i} by p^i , the momentum density. Then

$$\vec{K} = \int d^3x \left[\vec{p} t - \Im \vec{x} \right] . \tag{4.21}$$

If we let M be the total energy (or mass, since c = 1), then we can define the center of mass position as

$$\vec{x}_{\rm cm} = \frac{1}{M} \int d^3x \, \vec{x} \, \mathcal{H}(\vec{x}, t) , \qquad (4.22)$$

and we know that the total momentum \vec{P} can be written as

$$\vec{P} = \int d^3x \, \vec{p}(\vec{x}, t) . \tag{4.23}$$

Then

$$\vec{K} = -M \left[\vec{x}_{\rm cm} - \frac{\vec{P}}{M} t \right] , \qquad (4.24)$$

so this (explicitly time-dependent) conservation law implies that the position of the center of mass moves precisely at velocity \vec{P}/M .