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PROBLEM SET 1 SOLUTIONS

Problem 1: The energy-momentum tensor for source-free electrodynam-
ics

(a) We have the following action

S =
∫
d4xL =

∫
d4x

(
−1

4
FµνF

µν

)
, Fµν = ∂µAν − ∂νAµ . (1.1)

Before deriving the equations of motions from it, let us note that Fµν is anti-
symmetric: Fµν = −Fνµ, and

∂Fρσ

∂(∂µAν)
= δµ

ρ δ
ν
σ − δν

ρδ
µ
σ . (1.2)

The Euler-Lagrange equations then become

0 =∂µ
∂L

∂(∂µAν)
− ∂L

∂Aν
= ∂µ

∂L

∂(∂µAν)

=∂µ

(
∂L

∂Fρσ

∂Fρσ

∂(∂µAν)

)

=∂µ

(
−1

2
F ρσ(δµ

ρ δ
ν
σ − δν

ρδ
µ
σ)

)

= − ∂µF
µν .

(1.3)

We thus get ∂µF
µν = 0, which is nothing other than the inhomogeneous

Maxwell equations with no source. If we now set ν = 0 in Eq. (1.3), we
get 0 = ∂iF

i0 = ∂iE
i, where i = 1, 2, 3. Thus

∇ · E = 0 . (1.4)

And if we set ν = j in Eq. (1.3), we have 0 = ∂0F
0j + ∂iF

ij = −∂tE
j −

∂iε
ijkBk = −∂tE

j +
(
∇× B

)j

. Thus

∇× B − ∂t
E = 0 . (1.5)
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Note added: To find the homogeneous Maxwell equations, one can use the dual
field tensor ∗Fµν ≡ 1

2ε
µνρσFρσ. Using the definition of Fµν , Eq. (1.1), we find that

∂µ
∗Fµν = 1

2
εµνρσ∂µFρσ = 1

2
εµνρσ∂µ(∂ρAσ − ∂σAρ) = 0, due to the antisymmetry

of εµνρσ . Therefore, we get the Bianchi identity

∂µ
∗Fµν = 0 . (1.6)

Moreover, we have ∗F 0i = 1
2
ε0iρσFρσ = 1

2
εijkFjk = −1

2
εijkεjk	B	 = −Bi, and

∗F ij = εijk0Fk0 = −εijk0Ek = εijkEk. In other words, ∗Fµν is obtained from
Fµν by the transformation E → B and B → −E. Using Eq. (1.6) and repeating
the steps that led to Eq. (1.4) and Eq. (1.5), we get the homogeneous Maxwell
equations:

∇ · B = 0 (1.7)

∇× E + ∂t
B = 0 . (1.8)

(b) Under an infinitesimal translation xµ → xµ − aµ, we have

Aµ(x) → A′µ(x) = Aµ(x+ a) = Aµ(x) + aν∂νA
µ(x) (1.9)

L (x) → L (x) + aµ∂µL (x) = L (x) + aν∂µ

(
δµ
ν L (x)

)
. (1.10)

From Eq. (1.9), we have

∆L =
∂L

∂(∂µAλ)
∆(∂µAλ) = −Fµλaν∂µ∂νAλ = aν∂µ

(−Fµλ∂νAλ

)
, (1.11)

where we used the EOM for Fµν . Comparing Eqs. (1.10) and (1.11), we see
that ∂µ

(−Fµλ∂νAλ − δµ
ν L

)
= 0, and the energy-momentum tensor is thus

Tµ
ν = −Fµλ∂νAλ − δµ

ν L . (1.12)

This is manifestly not symmetric in µ, ν; but we can nevertheless construct
a symmetric energy-momentum tensor T̂µν = Tµν + ∂λK

λµν , where Kλµν is
antisymmetric in its first two indices, so that ∂µ∂λK

λµν = 0. Let us choose
Kλµν = FµλAν so that

T̂µν = −Fµλ∂νAλ − gµν L + Fµλ∂λA
ν

= FµλF ν
λ − gµν L .

(1.13)

This is manifestly symmetric.
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Written in terms of electric and magnetic fields, this becomes

E ≡ T̂ 00 = F 0λF 0
λ − L = E2 − 1

2
(E2 −B2) =

1
2

(E2 +B2) (1.14)

Si ≡ T̂ 0i = F 0jF i
j = −Ej(−εijkBk) = ( E × B)i . (1.15)

(c) The transformation,

Aµ(x) → A′µ(x) = Aµ(x) + aνF µ
ν (x)

= Aµ(x) + aν∂νA
µ(x) − ∂µ(aνAν(x))

(1.16)

is equivilent to a coordinate transformation as before, and a gauge transforma-
tion,

Aµ(x) → Ãµ(x) = Aµ(x) + aν∂νA
µ(x) (1.17)

Ãµ → A′µ(x) = Ãµ(x) + ∂µφ , (1.18)

where φ(x) = −aνAν(x).

As L is gauge invariant, L transforms as before in Eq. (1.10). Now apply
Noether’s Theorem,

jµ = aνT
µν =

∂L

∂(∂µAλ)
aνF

ν
λ − aµL (1.19)

Tµν = −FµλF ν
λ − gµν L (1.20)
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Problem 2: Waves on a string
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Problem 3: Fields with SO(3) symmetry
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Problem 4: Lorentz transformations and Noether’s theorem for scalar
fields

(a) We are given
x′λ = xλ − Σλ

σx
σ , (4.1)

so lowering the index gives
x′λ = xλ − Σλρx

ρ . (4.2)

Then to first order in Σ,

x′λ x′λ =
(
xλ − Σλ

σx
σ
)

(xλ − Σλρx
ρ)

= xλ xλ − Σλ
σx

σxλ − Σλρx
λxρ

= xλ xλ − Σλσx
σxλ − Σλρx

λxρ .

(4.3)

But the two terms in Σ each vanish due to the antisymmetry of Σλσ, so we have
x′λ x′λ = xλ xλ, as expected.

(b) According to Noether’s theorem, if a field theory possesses a symmetry

φ(x) −→ φ′(x) = φ(x) + αb∆φb(x) (4.4)

under which the Lagrangian density L is transformed by the addition of a total
derivative,

L (x) −→ L
′(x) = L (x) + αb∂µ J

µ
b (x) , (4.5)

where αb represents a set of infinitesimal constants, then the currents

jµ
b (x) =

∂L

∂ (∂µφ)
∆bφ− J

µ
b (4.6)

are conserved:
∂µj

µ
b = 0 , for each b. (4.7)

The Lorentz-invariance of the scalar field Lagrangian can be stated in this form,
with αb ↔ Σλσ , and ∆φb(x) ↔ xσ∂λφ(x) . The Lagrangian density is a Lorentz
scalar, so the tranformation acts only on the argument x of L (x):

L
′(x′) = L (x) , (4.8)

which implies that
L

′(x) = L (x) + Σλσxσ∂λL (x) , (4.9)



8.323 PROBLEM SET 1 SOLUTIONS, SPRING 2008 p. 9

exactly like the scalar field. We can make contact with Noether’s theorem by writing
the second term above as

Σλσxσ∂λL (x) = Σλσ∂µ

(
xσδ

µ
λ L (x)

)
. (4.10)

Thus
αbjµ

b = Σλσ
{
∂µφxσ∂λφ(x) − xσδ

µ
λ L

}
. (4.11)

Since Σλσ is antisymmetric, it is only the part of the above expression that is
antisymmetric in λ and σ that is required to obey the conservation equation. Thus,
raising the λ and σ indices, a conserved current jµλσ

1 can be written as

jµλσ
1 = xσ∂µφ∂λφ− xλ∂µφ∂σφ− (xσηµλ − xληµσ)L . (4.12)

Recalling that the energy-momentum tensor can be written as

Tµν = ∂µφ∂νφ− ηµν L , (4.13)

the conserved current can then be rewritten as

jµλσ
1 = xσTµλ − xλTµσ . (4.14)

This current differs from the one defined in the problem set by an overall sign, but of
course any fixed multiple of a conserved current is also a conserved current. Hence,
Noether’s theorem implies also that

jµλσ ≡ −jµλσ
1 = xλTµσ − xσTµλ (4.15)

is conserved.

To verify that the equations of motion imply that the current in the box above
is conserved, one can first check that Tµν is conserved. The equations of motion
are

φ ≡ ∂µ∂
µφ = −m2φ , (4.16)

and
Tµν = ∂µφ∂νφ− 1

2
ηµν

[
∂λφ∂

λφ−m2φ2
]
. (4.17)

Then
∂µT

µν = φ∂νφ+ ∂µφ∂µ∂
νφ− ∂λφ∂ν∂λφ+m2φ∂νφ

= −m2∂νφ+ ∂µφ∂µ∂
νφ− ∂λφ∂ν∂λφ+m2φ∂νφ

= 0 .

(4.18)
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It then follows that

∂µj
µλσ = δλ

µT
µσ + xλ∂µT

µσ − δσ
µT

µλ − xσ∂µT
µλ

= Tλσ − Tσλ

= 0 .

(4.19)

That is, jµλσ is conserved as long as Tµν is both symmetric and conserved.

(c) The conservation of jµλσ implies that the quantity

Ki ≡
∫

d3x j00i(x) (4.20)

is conserved. For clarity we can replace T 00 by H , the energy density, and T 0i by
p i, the momentum density. Then

K =
∫

d3x
[
p t−Hx

]
. (4.21)

If we let M be the total energy (or mass, since c = 1), then we can define the center
of mass position as

xcm =
1
M

∫
d3xxH(x, t) , (4.22)

and we know that the total momentum P can be written as

P =
∫

d3x p(x, t) . (4.23)

Then

K = −M
[
xcm −

P

M
t

]
, (4.24)

so this (explicitly time-dependent) conservation law implies that the position of the
center of mass moves precisely at velocity P/M .


