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PROBLEM SET 1 SOLUTIONS

Problem 1: The energy-momentum tensor for source-free electrodynam-
ics

(a) We have the following action
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S:i/J%Q::/d%<—ZEWF“>, F.=0,A,—0,A,. (1.1)

Before deriving the equations of motions from it, let us note that F,, is anti-

symmetric: £}, = —F,,, and
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The Euler-Lagrange equations then become
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We thus get 0,F*” = 0, which is nothing other than the inhomogeneous

Maxwell equations with no source. If we now set v = 0 in Eq. (1.3), we
get 0 = 9, F° = 9;F°, where i = 1,2,3. Thus

V-E=0. (1.4)
And if we set v = j in Eq. (.1.3), we have 0 = OgF% + 0,F" = —9,F7 —
aﬁﬁkBk::—GJW-+(ﬁ><§)f'rmm

VxB—-8E=0. (1.5)
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Note added: To find the homogeneous Maxwell equations, one can use the dual
field tensor *FH = %e“”p”Fpg. Using the definition of F},,, Eq. (1.1), we find that
0, FH = %e”””"@qug = %e”””"@u(ﬁpAg — 0,A,) = 0, due to the antisymmetry
of e#¥P? . Therefore, we get the Bianchi identity

* Uy
9 FM =0 . (1.6)
Moreover, we have *F% = %Gin”Fpg = %Giijjk: = —%GijkGWBZ = —B', and
i = IR0, = —¢IF0E, = ¢J9*E,. In other words, *F* is obtained from

F# by the transformation E — Band B — —E. Using Eq. (1.6) and repeating
the steps that led to Eq. (1.4) and Eq. (1.5), we get the homogeneous Maxwell
equations:

<

.B=0 (1.7)

=

VxE+8B=0. (1.8)

(b) Under an infinitesimal translation z# — z* — a*, we have

A (z) — A'M(z) = A*(x + a) = A*(x) + a0, A*(x) (1.9)
L(z) = L(z) + a0, L (z) = L () +a”0, (04 L (x)) . (1.10)

From Eq. (1.9), we have

AY = zxg—%mmn = —F"a"0,0,A5 = "0, (-F"9,A) . (L11)
"

where we used the EOM for F#*”. Comparing Egs. (1.10) and (1.11), we see
that 0, (—F“’\8VA>\ — 55‘&)) = 0, and the energy-momentum tensor is thus

TH = —FF9,A\ — 6" 4 . (1.12)

This is manifestly not symmetric in u, v; but we can nevertheless construct
a symmetric energy-momentum tensor TH = TH 4 §\ KM where KM is
antisymmetric in its first two indices, so that 9,0\K*" = 0. Let us choose
KM = FHAAY 50 that

TH = —FrA7 Ay — g Q) + FrA 0\ A

(1.13)
= FMRY — g

This is manifestly symmetric.
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Written in terms of electric and magnetic fields, this becomes

. 1 1
E=TV =FAF) - = FE? — 5(E2 — B%) = 5(E2 + B?) (1.14)

S; =T"=FYF," = —FI(~"*B¥) = (E x B); . (1.15)

(¢) The transformation,

At (z) — A" (z) = A¥(z) + " F " ()

(1.16)
= A¥(z) + a"0, A" (z) — 0*(a" A, (x))

is equivilent to a coordinate transformation as before, and a gauge transforma-
tion,

AH(z) — AP (x) = A*(z) + 0”0, A" () (1.17)

AP — A (x) = AM(z) + 01 (1.18)

where ¢(x) = —a” A, (z).

As ¢ is gauge invariant, & transforms as before in Eq. (1.10). Now apply
Noether’s Theorem,

g =a,TM = 6(2—5’20%}"& —a*d (1.19)
"

TH = —FH\FY — g Y (1.20)
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Problem 2: Waves on a string
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Problem 3: Fields with SO(3) symmetry
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Problem 4: Lorentz transformations and Noether’s theorem for scalar

fields
(a) We are given
A T YL (4.1)
so lowering the index gives
zh =z — Xypz . (4.2)

Then to first order in X,

Nz = (33>‘ — EAUxU) () — Xypz”)
=atzy — 2N 2%, — EApazAx” (4.3)

A

= z\ — Dapx’a — EApr

zf .

But the two terms in ¥ each vanish due to the antisymmetry of X,, so we have

oz = 2z, as expected.

(b) According to Noether’s theorem, if a field theory possesses a symmetry
$(x) — ¢ (x) = ¢(x) + " Ady () (4.4)

under which the Lagrangian density & is transformed by the addition of a total
derivative,

L) — L'(2) = L(@) + "0, Iy (x) | (4.5)
where o’ represents a set of infinitesimal constants, then the currents
0
g () = ——=Apop — 4.6
b ( ) 8 (8u¢) b &b ( )
are conserved:
Ougy =0, for each b. (4.7)

The Lorentz-invariance of the scalar field Lagrangian can be stated in this form,
with a® «» ¥ | and A¢y(x) < 2,0x¢(x) . The Lagrangian density is a Lorentz
scalar, so the tranformation acts only on the argument x of & (z):

L (2") = L(x), (4.8)

which implies that
L(x) = L) + 2z, 0L (2) (4.9)
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exactly like the scalar field. We can make contact with Noether’s theorem by writing
the second term above as

S 2,00 (z) = 2270, (2,05 L (x)) . (4.10)

Thus
aljlt = S {9 w00 p(x) — wo 04 L} (4.11)

Since ¥*° is antisymmetric, it is only the part of the above expression that is

antisymmetric in A and o that is required to obey the conservation equation. Thus,
.. . . U .

raising the A and o indices, a conserved current j;~° can be written as

j{”‘“ = 27 PO p — 22 O*p0° P — (27 — 2 H) L . (4.12)
Recalling that the energy-momentum tensor can be written as
TH = """ — ' L, (4.13)
the conserved current can then be rewritten as
GEAT = goTHA AT (4.14)
This current differs from the one defined in the problem set by an overall sign, but of

course any fixed multiple of a conserved current is also a conserved current. Hence,
Noether’s theorem implies also that

G = = = AT — o (4.15)

is conserved.

To verify that the equations of motion imply that the current in the box above
is conserved, one can first check that TH" is conserved. The equations of motion
are

O¢ = 0,0 ¢ = —m?¢ , (4.16)
and

TH = 9Hpd” ¢ — %n’“‘” [0xp0* ¢ — m?¢?] . (4.17)

Then
0, TH =[¢d" ¢ + 0" $0,0" ¢ — 0 Ppd” Ord + m?p0” ¢

= —m*0" ¢ + 0" $0,0" ¢ — 0*¢0" I + m* 0" ¢ (4.18)
=0.
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It then follows that
(9Hj“’\" = 6/’>T““ + a:AﬁuT““ — 5ZT“>‘ — a:"@uT“)‘
— T)\o‘ . TO‘)\ (419)
=0.
That is, j#*% is conserved as long as T"" is both symmetric and conserved.

(c) The conservation of j#*° implies that the quantity
K'= / d3z 5% (%) (4.20)

is conserved. For clarity we can replace T 00 by H, the energy density, and T by
p’, the momentum density. Then

K= /d% [fat— %&f} . (4.21)

If we let M be the total energy (or mass, since ¢ = 1), then we can define the center
of mass position as

1
Fory = i /d?’x:i"g&(:f, t), (4.22)
and we know that the total momentum P can be written as
P / & P 1) . (4.23)

Then

—

— P
K=-M ﬁcm - t 4.24

so this (explicitly time-dependent) conservation law implies that the position of the
center of mass moves precisely at velocity P/M.



