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The Blume-Emery-Griffiths (BEG) model is a Ising model with spin-1 particles and nearest neigh-
bour biquadratic interactions. It was initially proposed by the three authors as a generalization of
the Ising model to study the A phase transition of He* and phase separation in He® — He* mixtures.
Later many authors continued to study mutated versions of the BEG model, such as in 3-d, with

repulsive biquadratic interaction, etc.

Also people studied the BEG model on different lattices,

using typical methods of exact solutions, position space renormalization group, and Monte Carlo
simulations. In this paper I will try to summarize partly the analytical studies on BEG model with
several selected papers. These papers present results for different lattices, and can give us a rough

and broad view of the BEG model.

PACS numbers:

THE INITIAL BEG MODEL

In the initial paper by Blume, Emery & Griffiths [2],
they were motivated by the Ising model doped with a cer-
tain concentration of nonmagnetic impurities as a simpli-
fied model to simulate the superfluidity and phase sepa-
ration in a He® — He? mixture. This analogy comes from
the fact that both ferromagnetic transition and the super-
fluid transition are typical second order phase transitions
and presents similar universalities, and He® component
doesn’t contribute to the superfluidity, as the impuri-
ties in ferromagnetic transition doesn’t contribute to the
magnetization. The He* component is represented by
spins of +1, while the He® component corresponds to the
non-magnetic impurities with spin 0. The total spin
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corresponds to the original superfluid order parameter in
liquid helium. The He? concentration
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now is another order parameter which will determine
whether the superfluid phase separation can happen.
With this analogy between ferromagnetic and superflu-
idity, the Hamiltonian for nearest-neighbour interactions
is written as:

s=-J > SiS; (1)
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which from known results of Ising model will lead to a
second order phase transition at a certain critical tem-
perature T, if no impurities included. T, will intuitive-
ly decrease as the impurity concentration increases. To
model the phase separation, they proposed an interaction

term in the Hamiltonian:
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To conserve the particle numbers of the two species, they
included the chemical potentials:
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The third term now is a spin splitting term with different
energies for the singlet and the doublet. The forth term
is in general an external field but doesn’t have a physical
interpretation here in the context of superfluidity. Their
study of this simplified Hamiltonian shows that both su-
perfluidity represented by the Ising interactions (the first
term in Eq. 3) and the attractive interactions between
atoms of the same species (the second term in Eq. 3) can
lead to a phase separation. The interaction intensity ra-
tio J/K will indicate which of the mechanism causes the
phase separation. In this work they didn’t implement
the model with a specific lattice symmetry. Only the n-
earest neighbour number comes into the splitting energy
parameter A.

As summarized in [1], the usual computational tools
employed to study discrete models are: exact solutions,
position space renormalization groups, Monte Carlo sim-
ulations and series expansions. In the next few section-
s I'll summarize some selected work on the model with
these different methods.



SOLUTIONS ON 2D HONEYCOMB LATTICE:
EXACT SOLUTIONS

Since the birth of BEG model, several exact solutions
were found for certain realizations of the model. Here
I will discuss the exact solution to Eq. 3(see [4]) on the
honeycomb lattice with a constraint:

K = —IncoshJ (4)

First they analyzed the ground state of this model as
T — 0. Now

K= —[J| (5)

and the Hamiltonian is:
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for ferromagnetic case (J > 0) and
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for antiferromagnetic case (J < 0). As expected the
ground state for ferromagnetic is one of the 3 ordered
states with all spins equal 1,-1, or 0. The ground state
for antiferromagnetic case is six-fold degenerate, with the
above 3 ordered states and the other 3 antiferromagnetic
states in wich nearest neighboring pairs are 1,0,-1,0 and
1,-1.

Now for finite temperature, the constraint Eq. 4 mo-
tivated from the high-temperature series expansion now
greatly simplifies the problem by the relation:
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exp (JS;S; + KS?S7) =1+ S;S;jtanhJ  (8)

now the partition function is:

7 = Z H 1—|—SStHexp

S <i,j>

(=AS?+1S;)  (9)

where ¢ = tanhJ. Now we can map this partition func-
tion to an eight-vertex model (see [5]), by attaching the
nearest neighbor interaction weight t to each occupied
bond:

Z = Zg(a,b,c,d) (10)

Further applying a weak-graph expansion to the
eight-vertex model, and comparing it with the high-
temperature expansion for a spin-1/2 Ising model on a
honeycomb lattice, they showed the eight-vertex model
is equivalent to the Ising model with nearest interaction
K and an external field H:

Zs(a,b,c,d) = Zg(a', V', ,d)

= (a'/2coshH)N (coshK)™*N/2 7z (K, H)
(11)

where the primed parameters are determined by the
weak-graph expansion, and the Ising parameters are:

tanhK; = ¢ /ad’ (12)
tanhH =V /(d')? (13)

The equivalent Ising model has the same qualita-
tive magnetic behavior as the original BEG model since
K1J > 0. These results follow from the mapping;:

1. J > 0: ferromagnetic/paramagnetic phase transi-
tion boundary is

tanhJ < (2+e2)/2V/3

2. J < 0: the Ising model with zero external field is
known, and the anti-ferromagnetic/paramagnetic
phase transition boundary for the corresponding
BEG model is

eQ‘KI‘ — 2+ \/§

SOLUTIONS ON 2D SQUARE LATTICE:
POSITION-SPACE RENORMALIZATION
GROUP

Another analytical method to study the BEG model
is the position-space renormalization group. In [3], they
focused on the ferromagnetic and attractive biquadratic
interaction case, i.e., J, K > 0. Besides the square lattice
symmetry and the up-down symmetry, there is a Grif-
fiths symmetry intrinsic to the BEG model which maps
it to an Ising model when A < —1 or J = 0. They
conducted a certain coarse graining while preserving the
above symmetries:

(1) Group sites into cells. The cells are now every oth-
er plaquette of the original square lattice, and now they
still form a square lattice with a doubled lattice constant,
thus the scaling factor later will be b = 2.

(2) Determine the cell spin with a double majority rule.
The majority rule is: S2,, = sgn(}_, S5*). For cells with
2 up spins and 2 down spins, the coarse grained partition
function takes the cell to have 1/2 weight of spin-up and
1/2 weight of spin-down. The double majority rule is:

1. Reduce all site BEG spins s = 0,+£1 to the associ-
ated Ising spin ¢ = 2s? — 1 = +1.

2. Generate the associated Ising spins for the cell ¢’ =
2(s'*)? — 1 by the majority rule applied on t&. In
the 'non-magnetic’ case (¢’ = —1) the cell BEG spin
is determined s’ = 0.

3. Determine the cell BEG spin s’ in the 'magnetic’
case (t' = 1) by applying the majority rule directly
to the site BEG spins s¢. Notice now sgn(}, S&)#
0.



In addition to this scheme, they introduced a modifica-
tion to the majority rule by assigning a proportion v of
these configurations such as 1,1,1,-1, which in the above
only contribute to the cell spin s’ = 1, to the cell spin
s’ = 0. v is then best fitted to -0.06453 by yielding the
correct critical interaction J = 2in(v/2 + 1) for the Ising
model.

After the coarse graining, they conducted renormal-
ization group analysis with the scaling factor b = 2, and
find 13 fixed points in the parameter space. The sub-
sequent renormalization group analysis are the standard
procedure as described in [1].
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