
 
Memory-dependent Damping in Heisenberg Spin Chain 

 
Vazrik Chiloyan 

Massachusetts Institute of Technology, Department of Mechanical Engineering, Cambridge, MA 02139, USA 
(May 16, 2014) 

 
We derive the contracted dynamics of a Heisenberg spin coupled to a semi-infinite chain 
bath of Heisenberg spins.  The resulting dynamics mimics the Langevin dynamics 
observed for oscillators.  Whereas in oscillators the dynamics contains a random force and 
memory-dependent damping, the case for spins results in a random torque and the 
generalization of the Landau-Lifshitz equation to the memory-dependent damping case.  
We show that the decay rate of the damping kernel is algebraic and of the same form as 
the case for oscillators. 

 
 

 
I.   INTRODUCTION 

 
The Langevin equation1 is a celebrated equation of 

physics as it describes dissipative dynamics of open 
systems.  First applied to understanding Brownian 
motion2, it allows one to understand the dynamics of 
open systems through a contracted description.  Since its 
use as a phenomenological equation to describe the 
dissipative dynamics of a system, there has been a search 
for a microscopic model that could result in a Langevin 
equation.  For the lattice dynamics of atoms in the 
context of thermal transport by phonons a recipe has 
been developed for obtaining a Langevin equation3.  It is 
now well known that the effect of an infinite number of 
particles on a small subsystem coupled is to induce 
random fluctuations and damping, as correctly predicted 
by the Langevin equation. 

The results for the case of a semi-infinite chain bath 
of atoms oscillating in one dimension have been derived 
and yields a Langevin equation with memory dependent 
damping4.  In the case of spins, the equation which we 
wish to generalize is the Landau-Lifshitz (LL) equation5, 
which is the phenomenological description of the 
precession and damping of magnetization in a material.  
While the LL equation is local in time, the results we 
obtain show memory dependence for the damping. 

The purpose of this work is to derive the analogous 
results for the case of Heisenberg spins placed on a semi-
infinite lattice.  The general recipe is to transform to the 
normal modes using a generating function.  From there 
we solve the diagonalized equation of motion, and then 
transform back to obtain the dynamics as a functional of 
the “Brownian” degree of freedom, and the 
corresponding equation of motion of the Brownian 
particle will now be a contracted one and of the form of a 
Langevin equation.  The specific organization of the 
paper is as follows.  In Section II we provide a brief 

derivation for a semi-infinite chain bath of one 
dimensional oscillators for reference.  In Section III we 
derive the dynamics of the semi-infinite chain spin bath 
as a functional of the “Brownian” spin.  In Section IV, 
we refer to the Landau-Lifshitz equation describing the 
precession and damping of magnetization in a material 
and recognize for our system the generalized memory-
dependent damping.  In Section V we provide our 
conclusions from the comparison between the oscillator 
and spin cases and describe steps moving forward. 
 
 

II.   SEMI-INFINITE CHAIN  
OSCILLATOR BATH 

 
In this section we provide a brief derivation of the 

dynamics and Langevin equation from an oscillator 
chain.  Suppose we have a semi-infinite chain of particles 
of mass m  and nearest neighbor spring constant of ! , 
connected to what we will call the zeroth particle.  In this 
case, the Heisenberg equation of motion of our one-
dimensional system is described as:  
 

m d 2

dt2
x̂Hn

=! x̂Hn+1
+ x̂Hn!1

! 2 x̂Hn( ) n " #+

 
(1)

 

 

For simplicity, we define the frequency ! ! 2 "
m

 and 

define a non-dimensional time as ! ="t . We define the 
generating function and its inverse transformation to 
diagonalize the equations of motion:  
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! sin kn( ) x̂Hn
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n=1
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#

x̂Hn
!( ) = 2

! sin kn( ) ĥk !( )dk0

!
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(2) 
Multiplying Eq. 1 by 2

! sin kn( )  and summing n  over 
the positive integers, we obtain the diagonalized equation 
of motion:  
 

d 2

d! 2
ĥk + ĥk sin

2 k
2( ) = 1

4
2
! sin k( ) x̂H0

 
(3) 

From this diagonalized equation of motion, we can easily 
recognize the dispersion to be !k =! sin k

2( ) .  As such, 
our defined non-dimensional frequency !  is the 
maximum allowed frequency of the dispersion. 

Solving the equation which mimics a driven harmonic 
oscillator and inverse transforming back to the real space 
variables we obtain for the dynamics:  
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We have defined for simplicity the function:  
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(5) 
which is obtained through a straightforward contour 
integration.  

We now have the dynamics of the semi infinite chain 
as a functional of the zeroth atom.  The force on the 
zeroth atom due to the semi infinite chain bath is simply:  
 

F̂Hbath
=! x̂H1 ! x̂H0( )
= F̂ !( )! !K " ! ""( ) !̂xH0 "!( )d "!

0

!

#
 

(6)

 

Where we have explicitly written the result we expect of 
fluctuation and dissipation from a heat bath.  Utilizing 

the dynamics of the first bath particle, the one that 
couples to the zeroth, we obtain for these terms:  
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(7) 
The asymptotic expansion of the friction kernel for large 
times is:  
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(8)

 

As described, we obtain memory dependent damping 
with algebraic decay with oscillatory behavior.  The 
frequency of oscillations is ! , the cutoff frequency of 
the phonon dispersion. 
 
 

III.   DYNAMICS OF A SEMI-INFINITE  
SPIN CHAIN 

 
Our Hamiltonian for the semi-infinite spin chain we 

take as the three dimensional spin XXX model with an 
external magnetic field to allow for a single, non-
degenerate ground state energy: 
 

Ĥ = !J
!̂
! n "
!̂
! n+1

n=0

#

$ !" !̂ n,z
n=0

#

$
 

(9)
 

where J,! > 0 .  We will take ! ! 0+  so that the 
external field does not affect the dynamics other than 
providing a non-degenerate ground state for the spins.  

Utilizing the commutator of the Pauli spin operators, 
we obtain for the equation of motion of the Heisenberg 
operators:  
 

d
dt
!̂
! Hn

t( ) = 2J
!
"̂
! Hn

!
!̂
! Hn"1

+
!̂
! Hn+1( )

 
(10)

 

Unlike the phonon case, the dynamics of this system is 
nonlinear, due to the fact that the commutation relations 
for the position and momentum for the phonon system 
was a scalar, whereas for the spin case the commutator is 
itself a spin operator.   

With the external magnetic field in the positive z-
direction, the degeneracy of the ground state is broken.  
At zero temperature, the system’s state will be such that 
it will prefer to point upwards, so that 

!̂
! Hn

t( ) =
!ez .  We 
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are interested in low temperature excitations, and so we 
expand our Heisenberg operators in a small expansion 
about this equilibrium point: 

!̂
! Hn

t( ) =
!ez +
!̂sn t( ) , where 

!̂sn t( )  is a two-dimensional vector operator in the xy 
plane. 

Inputting this and linearizing, we obtain:  
 

d
dt
!̂sn =

2J
!
"ez !

!̂sn"1 +
!̂sn+1 " 2

!̂sn{ }
 

(11)
 

Defining for convenience the frequency ! !
8J
!

, and the 

non-dimensional time ! ="t , we now have a first order 
differential vector equation that has similar nearest 
neighbor structure as the oscillator chain.  

Defining the following generating function and its 
inverse transformation:  

 
!̂gk !( ) ! 2

!
sin kn( )

!̂sn !( )
n=1

"

#

!̂sn !( ) = 2
!
sin kn( )

!̂gk !( )dk0

!

$
 

(12) 

We can multiply our equation our motion by 2
!
sin kn( )

 
and sum n  over the positive integers to obtain the 
diagonalized equation of motion:  
 

d
d!
!̂gk =

1
4
!ez !

2
!
sin k( )

!̂s0 "
1
2
1" cos k( )#$ %&

!ez !
!̂gk

 
(13)

 

This can be understood as an oscillatory equation causing 
the two dimensional vector to rotate with a dispersion 
!k =! sin

2 k
2( ) .  Thus our defined frequency !  is the 

maximum cutoff frequency of the dispersion.  Notice the 
dispersion for these oscillations (magnons) is the square 
of the case for phonons.  One important difference is that 
the group velocity of the magnon dispersion vanishes at 
zero wavevector whereas it is finite for the case of 
phonons.  Thus the magnon dispersion is quadratic for 
small wavevector whereas the phonon dispersion is 
linear. 

We can represent the cross product with the z-
direction vector acting on a two dimensional vector in 
the xy plane as a matrix operation so that our differential 
equation in matrix form becomes:  
 

d
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%
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2
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(
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Solving this first order vector differential equation by 
diagonalizing the Hermitian matrix, we obtain:  
 

!̂gk !( ) = R ! !k
! "( ) !̂gk 0( )+

1
4

2
!
sin k( ) R !

2 !
"k
" # !"( )( ) !̂s0 "( )d"0

!

#  

(15) 
where we use the two-dimensional rotation matrix:  
 

R !( ) =
cos !( ) !sin !( )
sin !( ) cos !( )

"

#
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$

%

&

'
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(16)

 

Transforming back to the spin variables from this 
generating function, we obtain:  
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(17) 
Out of convenience, we define the function:  
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0
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(18)

 

which is straightforward to calculate through contour 
integration.  Using this function, we can write our final 
solution as: 

 

 
!̂sn !( ) = R ! !!n( )!!

2( ) J!!n !
2( )+ !1( )n!1 J!+n !
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#

$
%
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! ! (!
Jn !! (!
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(19) 
Thus we obtain the dynamics of the bath spins as a 
functional of the zeroth spin in order to be able to give a 
contracted description of the effect of the spin bath on 
the zeroth spin. 
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IV.   LANDAU-LIFSHITZ EQUATION WITH 

MEMORY-DEPENDENT DAMPING 
 

In this section we provide the connection between the 
microscopic dynamics of Sec. III and the macroscopic 
description of the LL equation and demonstrate memory-
dependent damping analogous to the Langevin equation 
obtained for oscillating atoms on a lattice from Sec. II.   

The dynamics of the zeroth spin in dimensional form 
is:  
 

!
2
d
dt
!̂s0 = J

!ez !
!̂s1 "
!̂s0( )

 
(20)

 

From this dynamical equation we can see that the net 
bath torque is:  
 

!̂
!bath = J

!ez "
!̂s1 #
!̂s0( )

 
(21)

 
To understand the damping force, we refer to the 
Landau-Lifshitz equation for a spin in an effective 
magnetic field with damping:  
 

!
2
d
dt
!̂
! H = !

!
Beff "

!̂
! H !!

!̂
! H "

!̂
! H "

!
Beff( )

 
(22)

 

where !  is the dimensionless damping parameter.  If we 
linearize as before !m =

!ez +
!s  in the presence of an 

infinitesimal external magnetic field in the positive z-
direction, we obtain for the two dimensional 
representation:  
 

!
2
d
dt
"̂s = !! !ez "

!̂s !!" !̂s
 

(23)
 

This is the case for damping with no memory effects.  If 
we generalize to the case of memory dependent damping, 
we expect the convolution:  
 

!
2
d
dt
"̂s = !! "ez "

"̂s !! K ! ! #!( )
"̂s #!( )d #!

0

!

$
 

(24) 
Where K t( )  is the memory-dependent damping kernel, 
which is in general a tensor now.  Thus we can rewrite 
the net bath torque in terms of the non-dimensional 
random bath torque and damping torque as:  
 
!̂
!bath !( ) = J

!̂
! !( )"

!ez #
!̂s0 " K ! " $!( )

!̂s0 $!( )d $!
0

!

%( )
 

(25)
 

Utilizing the solution of the first bath spin, we identify 
the non-dimensional random bath torque and memory 
dependent friction kernel:  
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(26) 
Eq. 25 and Eq. 26 are the fundamental equations of this 
work, as they provide the connection between the 
microscopic dynamics of the spins on the lattice with the 
contracted macroscopic description of the LL equation 
analogous to the Langevin equation for the oscillator 
chain.  Taking the asymptotic expansion of the friction 
kernel for large times:  
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(27) 
Once more we see memory dependent damping that has 
algebraic decay with an oscillatory pattern similar to Eq. 
8.  The decay rate is the same and even the frequency of 
oscillation is analogously the cutoff frequency of the 
magnon dispersion. 
 
 

V.   CONCLUSIONS 
 
We have derived a memory dependent friction kernel for 
a semi-infinite chain of Heisenberg spins.  By solving for 
the dynamics and referring to the Landau-Lifshitz 
equation, we observed that the effect of a semi-infinite 
chain bath of spins upon a single spin was to provide a 
random bath torque as well as the typical rotation and 
damping terms of the LL equation.  In our case the 
damping has memory effects and decays like a Bessel 
function, as a power law for large times. 
 More specifically, the memory kernel for both cases 
shows an algebraic decay of ! !32  in amplitude for large 
times as can be seen from Eq. 8 and Eq. 27, with 
oscillatory behavior with a frequency equal to the 
respective dispersion cutoff frequency.  Therefore, 
although we showed two different physical systems that 
have different normal modes of oscillation (dispersion), 
we obtained similar dynamics and behavior in their 
memory-dependent damping kernels. 
 Future study to solidify the similarity between these 
two systems would involve deriving the fluctuation 
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dissipation relation showing the dependence of the 
random bath torque autocorrelation upon the damping 
kernel as has been show for the case for phonons.  With 
this established, thermal transport by spin waves 
(magnons) at low temperatures can be calculated in a 
formalism similar to phonons6. 
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