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We aim to study the scaling behaviors of important correlation measures including entanglement
entropy and the newly proposed measure of purely quantum correlations, quantum discord (QD),
which quantifies all nonclassical correlations including entanglement as a subset, in general quantum
spin systems. In this work we emphasize on the latter measure (QD) and present the explicit
derivation of the relations between QD and spin-correlation functions in Zs-symmetric quantum
spin lattice models, which are powerful tools for studying pairwise QD behaviors in these models,
and analyze Heisenberg X X Z chain as an example, in the critical regime of which the QD is shown
to decay polynomially at zero temperature, but with different critical exponent as of correlation
functions. We also prove an area law for QD scaling in general noncritical quantum spin systems
with local interactions, in contrast to the expected extensive behavior.

INTRODUCTION

Correlation, which can also be interpreted as the mu-
tual information between systems, has always played an
essential role in quite a few fields, especially informa-
tion theory and many-body physics. In quantum many-
body systems, the strikingly weird form of correlation —
quantum entanglement, is also extremely important in
studying remarkable phenomena such as quantum phase
transitions [1], which are always the core topics in this
field. Moreover, the scaling behaviors of entanglement
exhibit quite anomalous properties, e.g., obeying an area
law [2], which has been providing connections and in-
sights into even the most fundamental aspects of physics.
However, people found that nontrivial quantum correla-
tion also exist in certain unentangled quantum systems,
which stimulates people to study correlation measures
beyond entanglement in quantum physics. Quantum dis-
cord (QD) is such a newly proposed quantity that quan-
tifies the amount of all nonclassical correlations [3], in-
cluding but not restricted to, entanglement, which has
received wide attention in recent years. In this work we
attempt to present some powerful tools in studying cor-
relation measures, specifically QD, in a typical kind of
quantum many-body system — quantum spin systems,
and give a preliminary study of some interesting scaling
behaviors of these correlations.

QUANTUM DISCORD (QD)

Quantum entanglement, as one of the most famous
“spooky” features of the quantum physics, describes a
unique form of correlations that can only show up in
the quantum world. Naturally we may ask does entan-
glement describe all correlations that have no classical
counterparts? The answer is not necessarily. People have
found out that unentangled states in many cases may
exhibit nonclassical physical behaviors [4]. So how do

we actually quantify the quantum and classical parts of
correlations? This question has been of great interest of
quantum information theory in recent years, and in 2001,
Ollivier and Zurek proposed the concept of quantum dis-
cord (QD) [3], which aims at quantifying all nonclassical
correlations.

Here we discuss two different physical perspectives
to define and understand QD, and prove that they are
equivalent. First for two classical distributions A and B,
the amount of correlation between them is captured my
the mutual information I(A : B) = H(A) + H(B) —
H(AB) where H(X) = —) pslogp, denotes the fa-
mous Shannon entropy, where X is a classical variable
with values z occuring with probability p,. On the
other hand, Bayes’ rule allows us to define an equivalent
form for the classical mutual information as C(A4|B) =
H(A) — H(A|B) with the conditional entropy H(A|B) =
> s PoH(A[b), which can be understood as the informa-
tion of A that can be obtained via studying B. Note that
for classical systems the mutual information yielded by
these two definitions are exactly the same. For the case
of quantum systems, we study subsystem B by making
local measurements on it. Suppose we try all possible
measurements formalized by POVMs or von Neumann
projectors, as the quantum case counterpart of the sec-
ond way of getting mutual information, we see

Cp(A:B)=5(4) - {fﬂl}}l} ZPkS(Ak), (1)
L2

where we run over all possible measurements denoted
by {IIp} with outcome labeled by k, and Aj is the re-
duced state of subsystem S with k as the outcome of
measurement on B, the density matrix of which reads
pax =trp[(1a @ 1) pag]/pi to preserve the trace con-
straint. As the measurement is locally done on party B,
the mutual information we get in this way is purely clas-
sical, i.e., Cp(A : B) quantifies the amount of classical
mutual information. On the other hand the total mutual



information is obviously given by
I(A:B)=S(A)+ S(B) — S(AB), (2)

where S(X) = —px log(px) denotes the von Neumann
entropy of a quantum state X, and px is its density ma-
trix. Therefore quite naturally, we have the following
definition of QD:

Definition 1 (QD as non-classical correlation). QD,
which quantifies the amount of purely quantum corre-
lations, is the discrepancy of total mutual information
and classical mutual information, i.e.,

D(A:B)=1I(A:B)—Cg(A: B). (3)

We emphasize that classically D(A : B) definitely goes
to zero due to the equivalence of the classical counter-
parts of the two forms of mutual information, hence it
does not have any classical analogs, i.e., quantifying only
the ‘quantumness’ of correlations.

Alternatively, we can similarly define quantum condi-
tional entropy as S(A|B) = S(AB)—S(B). For postmea-
surement state it takes the form S(A|B) = 3, prS(Ay),
where Ay, is defined earlier. Therefore we can also under-
stand the amount of quantum correlations as the mini-
mum amount of mutual information that cannot be ac-
cessed via any kind of local measurements on a subsys-
tem:

Definition 2 (QD as the minimum amount of mutual
information that cannot be accessed via local measure-
ments). QD is the minimal difference between the quan-
tum conditional entropies of pre- and postmeasurement
S(A|B) over all possible measurements. i.e.,

D(A : B) = min S(A|B) — S(A|B). (4)
{1}
Theorem 1. The two definitions of QD are mathemat-
tcally equivalent.

Proof. We start from the mathematical form of QD in
Definition 1:

D(A:B)=1I(A:B)—-Cg(A: B)
=S(A)+S(B) — S(AB) — S(A)

+ min ka(Ak)
fhin 2
= min » peS(Ax) + S(B) — S(AB)
{5
= min S(A|B) — S(A|B),
{mi }
and arrived at Definition 2. O

Interestingly, QD is generally a measure of correlation
beyond entanglement for mixed quantum states, i.e., it
can be non-zero even for some separable states. A very

simple example is the following highly symmetric bipar-
tite state:

PAB =%(I+><+\A ®10){0l5 + [-)(—[a @ [1)(1]B
+0){0la @ [=)(=[B + [)(1[a @ [+)(+]5). (5)

Using Perez-Horodecki positive partial transpose (PPT)
criterion [5] we can easily see that this state is separable,
i.e., unentangled. Numerically we can verify that for this
two-qubit state S(Ag) = S(A1) = —logt — 3log2 ~
0.81, and therefore D(A : B) = %log% ~ 0.31, with
the measurement basis {|0)(0], |1)(1]} either on A or B,
which is exactly the Schmidt basis (with which the den-
sity matrix is diagonal). Note that for pure states, QD
trivially reduces to entanglement entropy S(A4) = S(B).

In the past few years, QD, as a very fruitful measure
of quantum correlations beyond entanglement, has be-
come a new hot topic in various fields related to quan-
tum physics. We suggest one referring to a recent review
paper [4] for more discussions.

Z>-SYMMETRIC QUANTUM SPIN LATTICE
MODELS

In this section we first present various powerful tools
for analysing correlations between interacting pairs of
spin-1/2 spins in quantum spin lattice models without
introducing Zs symmetry breaking terms in the Hamilto-
nian, e.g., magnetic field. As the two-site reduced states
are generally mixed, as we will see, studying QD in quan-
tum many-body systems as the measure of non-classical
correlations beyond entanglement may provide new phys-
ical insights. We systematically discuss the original cal-
culations of pairwise QD in such models and the scaling
behaviors of correlation measures via Heisenberg X X7
chain as a specific example.

Two-site reduced state

First we shall present some general properties of the re-
duced state of two sites in quantum spin models obeying
Zo symmetry as preliminaries for further results.

In the computational basis {|00), |01}, |10),|11)}, the
reduced density matrix of two sites ¢ and j (tracing out
other sites) in the Zy-symmetric quantum spin models
takes the form

00 0 0 o03
0 o011 012 O
" ) 6
0 ol 022 O ( )
03 0 0 o33

Pij =

with only the diagonal and anti-diagonal entries being
non-zero, therefore bears the name of “X state”, which
is mixed in general, i.e., QD does not simply reduce to



forms of entanglement entropy. Here we only need to
consider real X state, i.e., 012 = 0}y and o3 = 053, be-
cause they can always be transformed into real numbers
via local unitary transformations, which preserves phys-
ical quantities. Considering the trace constraint, we see
that this density matrix actually has only five degrees of
freedom. Thus we can non-redundantly define the five

(L®1

B~ =

Pij =

This decomposition is very useful and will be referred to
in later calculations.

In quantum spin models, the matrix elements of p;;
can be expressed in terms of spin-correlation functions
[6] as follows:

00 = §(1+GZ+GZ G#), (13)
o =3(1+Gi — G2 — G%), (14)
022 = i(l—Gz‘*‘GZ Gi7), (15)
033 = (1 - G; — G3 + G7), (16)
012 = Q72 = %(Gz‘zf +GYY), (17)
003 = 053 = i(fo ngy), (18)

For later calculations of the von Neumann entropy of this
state, we work out the eigenvalues of p;; here:

M= (14 G+ GY - GF), (19)
N = 11— G -G — Gz, (20)
Xa = 51+ GF + JUGH? + (G — G2, (2D)
Ay = % 1+Gi7 - \/4 (G7)? Gm - ngy)Z)' (22)

We note that the deriving analytical forms of QD, even
for very simple cases, is extremely hard. Generally com-
puting the exact value of QD has been proved to be NP-
complete [7]. For X states we have some approximate
results [8, 9], yet the accurate analytical formula is still
unknown [10, 11]. However, we still have the following
useful conclusions that can help us deal with states of
general interest:

+Gilof @ of + Gﬁ’;’af ® oY +Gifoi ®@oi +Gio; @1+ G3L, ®JJZ-) )

J

free parameters in terms of spin-correlation functions:

Gf = (07) = tr(ofpij) = 000 + 011 — 022 — 033, (7)
G7 = (05) = tr(0Fpij) = 000 — 011 + 022 — 033, (8)
Gif = (ofof) = tr[(of ® 0f)pij] = 2(012 + 003), (9)
G?gy = <U§/U§!> =tr [( ® g; )sz] =2(012 — QOS) (10)

G} = (of0}) = tr[(0} ® 7} )p”] = 000 — 011 — 022 + 033,
(11)

with all of which ranging in [-1,1]. Here G} = (o7) (I =
i,7) and Gf}ﬁ = <0°‘05> (o, B = z,y, 2) denote the mag-
netization density at site [ and two-site spin-correlation
function of sites i, j, respectively. This parametrization
will be used in later discussions and the explicit QD cal-
culation in the next subsection. More importantly, p;; is
naturally decomposed as

(12)

(

Lemma 2 (optimal measurement for real X states). The
local measurement on one subsystem (e.g., without loss
of generality, B) that minimizes the quantum conditional
entropy of postmeasurement bipartite X states S(A|B),
i.e., gives the value of QD, is (i) 0%, i.e., with respect to
local projectors {|+)(+|,|—){—|} where {|+),|—)} form
the eigenbasis of o if

[v/000033 — \/011022| < |012] + |003], (23)

or (ii) o%, d.e., with respect to local projectors
{]10)(0], |1)(1]|} where {|0),]|1)} (computational basis) is
the eigenbasis of o if

(24)

(lo12| + leos])? < (000 — 011)(033 — 022).

The basic idea for the proof is to parametrize the
general two-qubit POVM {EL} as {p*(1 + i*dp)} 5",
where Y, p¥ =1, (ii*)? = 1, and 3, p*i* = 0, or sim-
ilarly parametrize the von Neumann measurement (as
will be shown in the next subsection), and the value of
S(A|B) (denoted as Sp(pap) in some literatures) turns
out to be a concave function whose minimum is lo-
cated on the boundary. Some details for proving case
(1) are presented in [10]. Note that we shall assume
|GFF| > |GYY| (expressions in terms of matrix elements
shown by Eq. (9) and (10)) without loss of generality
since we can always switch the signs of the involved en-
tries via a local unitary transformation, in which case (i)
and (ii) have covered most possibilities, and in addition,
even if we adopt o or o} as the optimal measurement
for all X states there is shown to be only a very small
error for very few cases numerically. Using 0% or 0% as
the optimal measurement suffices for our analysis here.



Pairwise QD

Here we present the calculations of two-site QD in Zs-
symmetric quantum spin lattices in terms of pairwise cor-
relation functions. As the scaling laws of these correla-
tion functions in a number of spin models have already
been widely studied, the results in these subsections can
serve as powerful tools to analyse the scaling behaviors
of QD and generic correlation measures.

Projector parametrization method

Generally calculating QD involves extremization
over all possible measurements formulated by POVMs
(parametrization shown in the previous subsection) or
von Neumann projective measurements. For the two-
qubit case, we can parametrize the local projectors
that accomplish the measurement on subsystem B as
{V]0)0|VT, V|1)(1|]VT} where

V( COS%

0 ik
51n2e

in &e—i¢

") e
2

and 6 € [0,7],¢ € [0,27), i.e., V € U(2) [6]. Note that

the mathematical form for calculating QD used in [6] is

given by the discrepancy between total and purely clas-

J

S(ilj) = S(ij) = S(G) = = Y AalogAa +

with {A\,} given in Eq. (19)—(22).

Next, according to Lemma 2 and the immediate discus-
sions, there are two classes of postmeasurement states ob-
tained by corresponding optimal measurement bases (i)
{4+ [=) (=1} or (ii) {]0){0],[1)(1]}. Now we compute
the quantum conditional entropies of these two classes,
and hence QDs, separately.

pij 4+ = (L @[+){+5)pis

sical mutual information, which we already know to be
equivalent to the form we will consider according to The-
orem 1.

Ezxplicit calculation with optimal measurements

Here we adopt the difference of quantum conditional
entropy between pre- and postmeasurement states as the
mathematical form of QD and use the conclusions of op-
timal measurements to explicitly calculate pairwise QD.

First from the eigenvalues given in Eq. (19)-(22), we
can easily obtain the von Neumann entropy of the total
state S(ij). Taking advantage of the decomposition Eq.
(12), we simply trace out subsystem ¢ and arrive at the
reduced density matrix

1 x 1 z X
Pj:§(1j+VUj):§(1j+Gin)v (26)

with eigenvalues (1 + G%)/2, hence the subsystem von
Neumann entropy is

14+ G:

; 1+G; 1-G?
5 log -

i 1_Glz
2 7 %%

2

S() = - (27)
So, the quantum conditional entropy of the original two-
site state is given as

z
7

G 1
log (1 +G7) +

z
3

g (1-65) -1, (28)

Class (i): {|4+){+],|=){(—|} as the optimal measure-
ment basis. For p;; in this class, the local measure-
ment operation on the original bipartite density matrix
is (1; ® |[£)(=£];), with two possible outcomes, whose cor-
responding postmeasurement density matrices are given

by

_ 1 T T Yy Y 2z 2
—71 z®|+><+|j+GU a; ®|+><+|J+§G” o; X <1 1>j+2Gij0i ® (1 1)J

z Z 1 z 1 —
+Gio} ®+><+|j+2Gjli®<

pi;— = (Li®[=){=l5)pi;
_1
4

+Gio7 @ =) (-l; + §Gj1i® (

1 -1

-1 -1

)] (20)

1

L@ |=){=l; - Gijoi ®|—><—|j+2GgJy‘7iy®< 1 )‘+2Gijgi ®(_ >
J J

)j], (30)



respectively, with equal probabilities p; = ps = 1/2.
Hence the reduced density matrices after tracing out j
read

pig = 2trips _ = 5(1+GHo® +Gjo®), (31)
3(1-Giro™ + Gio®),  (32)
|

pi,— = 2trjp;s =

4
D(i:j)=—Apyloghy v — Ay _loghy — + ) Aglogha —

a=1

Class (ii): {]0)(0], |1)(1]} as the optimal measurement

basis. As the calculation procedures are similar with (i),
|
- o nd 01 vy LY
pio=7| L@ 100, +GFore (o) +Clate
J
L L 5T 00 vy LY

and the corresponding reduced density matrices for i are

1
b= S0 +GIL+(GF+Co) (39)
1 z 4 z z
pia = 5[(1 = G)1+ (=G +G})o7], (39)

which are already diagonal in matrix form, but notice
that the eigenvalues corresponding to the two measure-
ment outcomes are no longer the same. We omit boring
technical steps here, and finally we will obtain

Dii:j)=— Y Aalogies— S(ilj) (40)
{k=0,1}
{I=+,-}
for this class, where S(i|j) is given by Eq. (28), and
1 r4 zz z
Ao+ = 5(1+GjiGij + G§), (41)
1 r4 A r4
M= 5(1—Gj:FGij + Gj). (42)

With all these results involving correlation functions and
QD at hand, we are now well equipped to analyze their
behaviors in spin models obeying Zs symmetry, including
X XZ model, XY model and the transverse field Ising
model etc. in one dimension.

whose spectra are the same:

L4, /(GF)? +(GF)?
2

Mt =Xy = (33)

The prefactors 2 come from probabilities on the denom-
inators. So we obtain the quantum conditional entropy
of the postmeasurement (optimal) state as

S(ilf) = =My slog Ay — Ay _log Ay —, (34)

which finally gives us the value of QD (for the first class
we present the full expression in terms of eigenvalues):

1+4G? 1-G?
+ G log (1+G7) — ¢

log(1-G7)+1. (35)

(

we only give important results here. The postmeasure-
ment density matrices are

0 0 ) G G0 @ 0] + Gt 0) 0] 30
J

i 0 ) (=G + Gt @)1, + GIL o 1)1 (37)
J

An example: Heisenberg XX7 chain

In this subsection we shall preliminarily illustrate the
two-site scaling behaviors of correlation measures via ex-
plicitly working out a specific example: the 1D spin-1/2
anisotropic Heisenberg X X Z spin model, whose Hamil-
tonian reads

Hxxz(A) =Y (070}, +0lol,, + Acjoi,,), (43)

%

where the anisotropy parameter A controls the quantum
phases. Note that this model can be solved by the Bethe
ansatz [12]. For A > 1, the system is in the antifer-
romagnetic Néel phase which breaks the lattice transla-
tion symmetry, and for A < —1, the ferromagnetic Ising
phase, which breaks the spin reflection symmetry. Both
of the above phases are gapped and have two-fold degen-
erate groung states. A — +o0o and A — —oo are re-
spectively the antiferromagnetic and classical Ising limit.
The model is in the critical XY phase (i.e., gapless) when
A € (—1,1], which is known to be described by a ¢ =1
conformal field theory (CFT), as the correlation length
diverges and the system becomes scale invariant [2].



Note that the X X Z chain exhibits U(1) invariance [6],
namely, [H, &), 07] = 0, which is even a stronger con-
straint over the elements of the density matrix than the
Z5 symmetry, i.e., the two-site reduced state is an X state
and pg3 also vanishes, hence we are safe to use previous
results.

Volumetric scaling of entanglement entropy

Quantum entanglement in many-body systems, espe-
cially of ground states, are extremely important in study-
ing the behavior of the systems, e.g., quantum phase
transitions [1]. For a total pure bipartite quantum state,
the entanglement entropy corresponding to a certain par-
tition is uniquely defined, which is very useful for indi-
cating quantum criticality. The volumetric entanglement
entropy scaling in different regimes of the X X Z model is
discussed in [12, 13]. We briefly mention that in the 1D
critical regimes (in this model, A € (—1,1]), CFT yields
that the (subsystem) entanglement entropy scales as

c+c

Sa(l) = 5

logl + k, (44)

where k£ is a model-dependent constant and c¢,¢ are
holomorphic and antiholomorphic central charges respec-
tively [14], indicating different universality classes.

Two-site scaling of QD

We are interested in the two-site QD scaling in the
critical phase where A € (—1,1) at zero temperature as
the pairwise correlation in gapped phases is naturally ex-
pected to decay exponentially. In this gapless regime, us-
ing our notations, the pairwise spin-correlation functions
scales as [15]

Gl =G ~li—jI™* (45)
G5 ~ i — |72 + e2ikrlizily — j=07" (46)
with critical exponent given by

1 arcsin(—A)

9:2 T

€ (0,1), (47)

and e?*#r1i=7l a phase factor. Here the leading order term
in G} seems to be uncertain, but it is always at higher
order than G§, G}/

After plugging these spin-correlation functions into the
parametrization Eq. (7)—(11), we will discover that Eq.
(23) is satisfied, hence the two-site reduced state that we
are studying falls into class (i) and the expression of QD

is given by Eq. (35). Up to leading order, QD scales as

D(i: j) ~ (GI7)? ~ i = 4|7, (48)
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FIG. 1. (Adapted from [16]) Intuitively speaking, under lo-
cally interacting Hamiltonians, the correlation length is finite
so that sites in A and B that are separated by a distance
further than the correlation length (the shaded stripe) should
not contribute to the mutual information or correlation mea-
sures between A and B, hence bounded by the number of sites
at the boundary and therefore scales as the boundary area.

hence we conclude that in the critical XY phase at zero
temperature, QD decays polynomially, which resembles
the behavior of spin-correlation function, but with differ-
ent critical exponents.

AREA LAWS FOR GENERAL SPIN SYSTEMS

Typically, the interactions in quantum maby-body sys-
tems are local, as inherited by the decay of correlation
measures. Quite interestingly, the feature of locality
is also reflected by the anomalous scaling behavior of
ground state entanglement entropy, which grows linearly
with respect to the boundary area of the subregion in-
stead of the volume, which is in contrast with the ex-
pected extensive behavior. This kind of scaling behav-
iors are generally said to obey an “area law” [2]. The
general mathematical statement if a physical quantity ®
of region A obeys

o(4) = O(|04]), (49)

where 0A denotes the boundary area of A, we say that
the area law is satisfied. The intuitive picture here is
shown in Fig. 1. In locally interacting systems, the cor-
relation length is finite so that sites in A and B that
are separated by a distance further than the correlation
length (the shaded stripe) should not contribute to the
mutual information or correlation measures between A
and B, hence bounded by the number of sites at the
boundary and therefore scales as the boundary area.

In this section we briefly discuss the area laws for en-
tanglement entropy and total mutual information for gen-



eral spin systems, and in turn present the area law for
QD in locally interacting non-critical spin systems.

Entanglement entropy

The area laws of entanglement entropy in various con-
texts have been widely studied [2]. For quantum many-
body systems on lattice (the entire system) W where
A is a subregion and B = W \ A its complement,
S(A) = O(|0A]) implies that the area law is satisfied
in the system. We emphasize that, in fact, it is truly un-
usual for a quantum state to satisfy an area law [2] as it
has been shown that the typical entropy of a subsystem
is nearly maximal [17], indicating that it should scale as
the volume instead of boundary area. For the purpose in
this section it suffices to know that surprisingly for gen-
eral ground states of quantum spin systems in gapped,
i.e., non-critical phases the area law is obeyed. In 1D,
the area law statement was first made rigorous by Hast-
ings [18]. This is also another clue showing us the unique
physical significance of ground states. Notable violations
take place at quantum criticalities, models with Fermi
surfaces etc., and the non-trivial topological order will
result in a negative term in the ground state entangle-
ment entropy, namely topological entanglement entropy.

It is worth mentioning that the area laws for entangle-
ment entropy has deep connections [19, 20] with the fa-
mous area dependence of the Bekenstein-Hawking black
hole entropy [21, 22], which suggests that the entropy of
a black hole is proportional to its horizon area A:

kA kA

= 4Gh’

= a2z~ (50)

SBH

where lp = 1/GHh/c? is the Planck length, as they share
similar scaling behaviors. Actually these discoveries of
black hole entropy scaling laws were the driving force for
several studies of entanglement entropy scaling in quan-
tum fields later on [23, 24].

Total mutual information

As has been mentioned in the introduction of QD,
the total (quantum and classical) mutual information
for a bipartite quantum state AB is defined as I(A :
B) = S(A) + S(B) — S(AB) where S(-) denotes the
von Neumann entropy. Thermal states of the form
pap = e B /tre=PH with inverse temperature 3 min-
imizes the free energy F(p) = tr(Hp) — S(p)/3, and
F(pap) < F(pa ® pp). Therefore we obtain [16]

Lemma 3 (area law for total mutual information). We
denote the total Hamiltonian as H = H s+ Hp+Hy where
Hpy collects interactions crossing the boundary. The total

mutual information is bounded by a first order function
of Hy, i.e.,

I(A: B) < Bu[Ho(pa ® pi — pan), (1)
hence satisfying the form of an area law.

More specifically if we only consider two-site interac-
tions, we will have

: < ijlly
I(As B) < 2800A] mase [[h| (52)

where ||h;;]| is the eigenvalue of the two-site interaction
between ¢ and j (across the boundary).

QD

For the same kind of quantum systems, we prove the
following scaling theorem for QD:

Theorem 4 (area law for QD). For general quantum
spin systems in non-critical regime with local interac-
tions, the QD of subgraph A scales as the boundary area.

Proof. As introduced, we denote the entire spin system
as W and B = W\ A. From Definition 1 of QD, we have
D(A:B)=1I(A: B)— Cg(A: B) with classical mutual
information Cg(A : B) > 0, hence

D(A:B)<I(A: B). (53)

According to Lemma 3, I(A : B) ~ JA and S(A)0A,
hence D(A : B) ~ 0A. Intuitively QD is upper and
lower bounded by two correlation measures that both
satisfy the area law in our cases, therefore it naturally
obeys area law either.

Specifically for two-site interactions [25], using Eq.
(53) the relation in Lemma 3, we immediately see that
D(A : B) < I(A : B) < 28|0A|max; jeoa ||hij||. Given
that D(A : B) > S(A) we conclude that D(A : B) ~ 0A,
i.e., scales with the boundary area. O

Further insight

In fact all sorts of correlations are fundamentally mea-
sures of some forms of mutual information. As indicated
by the holographic principle, on the fundamental level
the information of a region should depend on its surface
area instead of volume. Therefore the studies on scaling
behaviors of correlation measures are extremely fruitful.

Furthermore, the fundamental reason (e.g., possibly,
the locality of interactions) for these area-dependent scal-
ing laws of correlations measures, is still subject to de-
bate. We suggest that the obedience of area law of var-
ious correlation measures implies the locality of corre-
sponding interactions, and, as has been discussed, vice



versa, hence it may be considered as an indicator and
physical definition for generically local interactions, and a
necessary condition for a good correlation measure given
that the interactions are local.

SUMMARY AND OUTLOOK

In this work we explicitly derived the relations between
QD and spin-correlation functions in Zs-symmetric quan-
tum spin lattice models, and analyzed the scaling be-
haviors of entanglement entropy and QD in Heisenberg
X XZ chain as an example. We see that in the criti-
cal phase QD decays polynomially at zero temperature,
but with different critical exponent as of correlation func-
tions. We also introduced the anomalous area laws for
ground state entanglement entropy and total mutual in-
formation, which has been of extensive interest for years,
and proved that in general noncritical quantum spin sys-
tems with local interactions QD also satisfies the area
law. As we have mentioned in the last section, the studies
on scaling behaviors of correlation measures are of great
significance due to its connection with the holographic
principle and black hole physics etc., hence may provide
some unique insights into fundamentals of physics.

In the past few years, QD has become the most popular
measure of quantum correlations beyond entanglement,
and we believe this quantity shall provide significant in-
sight and implications of the nature of quantum corre-
lations and even quantum physics. However we cannot
say it has been well understood yet. For instance we can
only give reliable results or methods of calculating QD for
very limited quantum systems. Recently we showed that
energy cannot flow between systems with zero QD, and
the energy flux is proportional to the diagonal QD define
with respect to Schmidt basis. Concerning the scaling
behaviors in quantum many-body systems, we still have
lots of further questions, for instance

e What does the different critical exponents of corre-
lation measures tell us?

e Will QD exhibit very different scaling behav-
iors compared to entanglement entropy for certain
Hamiltonians? How do we construct them?

e Does the violation of area law of QD provide new
physics?

e Will the scaling behaviors of QD reveal new kind

of quantum orders, like topological entanglement
entropy does?

As we see, these topics are quite new and many questions
are waiting to be answered. We believe new insights may
emerge at this interface between quantum information
theory and many-body statistical physics.
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