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We study a conformal bootstrap approach to the Ising model in fractional dimension 1 < d < 2.
In particular, we propose that the conformal bootstrap as it stands is not a natural approach to
define and analyze conformal field theories in dimension below two. We then use these ideas to
suggest a mechanism for the numerical results obtained for 1 < d < 2 [1]. Finally, we discuss a
potential epsilon expansion around the exact solution at d = 2, finding that a Hamiltonian approach
for such a method would not be tractable and that methods using conformal perturbation theory
are likely the only way forward.

The recent development of the conformal bootstrap has
resulted in its rapid adoption into studies of critical be-
havior. Critical behavior only implies scale invariance,
but most critical points, such as that of the Ising model,
are also conjectured or proved to have conformal sym-
metry as well. This implies that, after coarse graining to
obtain a field theory, a system at its critical point can be
descried via a conformal field theory.

Analysis of critical behavior through conformal field
theory has the theoretical advantage that it allows one
to study universality classes themselves, rather than the
models that belong to them, thereby focusing on relevant,
universal behavior from the start. It is therefore a much
cleaner approach than conventional methods. Recent ad-
vances in numerics have allowed it to become practically
useful as well: it currently provides the best known esti-
mates for the critical exponents of the three dimensional
Ising model [2]. It also provides a method for nonpertur-
batively calculating critical exponents in fractional di-
mensions [3]. Unfortunately, this method seems to fail in
1 < d < 2: Ising critical exponents are very clearly ruled
out. In this paper, we propose a reason why, and begin
discussing a method to further investigate the behavior
in this regime.

The paper is structured as follows. In the first sec-
tion, we review the formalism of the conformal boot-
strap, specifically the pieces relevant to understanding
the bootstrap calculations of Ising exponents. In the sec-
ond section, we specialize to the case of the Ising model
and explain how one can pick out the Ising model from
the zoo of Z2 symmetric conformal field theories. Next,
in the third section, we discuss the analytic continuation
to fractional spacial dimension and subtleties that oc-
cur when d < 2. In the fourth section, we interpret the
numerical results using our proposal that the numerical
method ceases to be valid for d < 2 because it adds extra
constraints. Finally, in the fifth section, we discuss a po-
tential method to analytically explore behavior close to
d = 2 and set up the very beginning of the calculation.
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I. THE CONFORMAL BOOTSTRAP AND THE
ISING MODEL

In this section, we review the key elements of conformal
bootstrap method. What we present is a strict subset of
[4], where readers can look to find detailed proofs of the
statements given below.

Conformal symmetry for d > 2 consists of translation
symmetry generated by Pµ, rotational symmetry gener-
ated by Mµν , dialation symmetry generated by D, and
symmetry with respect to special conformal transforma-
tions generated by Kµ. The case for d = 2 is more com-
plicated, and is analyzed using the Virosoro algebra.

We are interested in understanding euclidean confor-
mal field theory and in particular the scaling of operators.
This corresponds to the eigenvalues of the dialation op-
erator, and so we seek a formalism where it is naturally
diagonal.

In Euclidean signature, by rotational invariance, we
can choose any direction we want to represent “time”.
Since we are interested in the eigenvalues of the dialation
operator, it makes sense to choose the distance from the
origin to represent time, so that the dialation operator
generates the evolution of the states. This is known as ra-
dial quantization and the resulting states live on spheres
that evolve by increasing their radii. Using conformal
invariance, this construction can be used to define a one
to one correspondence between an operator and the state
living on the sphere containing an insertion of that op-
erator. This construction gives |O〉 = O |0〉 as the state
corresponding to the operator O.

We are interested mostly in the dialation operator and
so work with a basis |Oi〉 such that it is diagonal. The
eigenvalues are labeled ∆i and correspond to the scaling
dimension of the operator Oi. The scaling dimensions of
the relevent operators are sufficient to determine the crit-
ical exponents, and are therefore our primary concern.1

With the above definitions, one can calculate

[D,Mµν ] = 0

1 The condition of relevancy in the operator language translates
to yO = d− ∆O > 0.
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[D,Pµ] = Pµ (1)

[D,Kµ] = −Kµ.

The first relation tells us that we can also label op-
erators according to which representation of SO(d) they
belong to. The second two relations tell us that Pµ and
Kµ act as raising and lowering operators respectively. We
call operators O whose states are annihilated by Kµ pri-
mary, and say that the operators corresponding to states
of the form Pµ1

...Pµn |O〉 as members of the conformal
multiplet generated by O.

Conformal symmetry can also be used to fix the form
of correlation functions. The two point correlation func-
tions of two primary scalar operators is given by

〈OiOj〉 =
Cδ∆i∆j

|xi − xj |∆i+∆j
. (2)

The three point function is

〈OiOjOk〉 =
fijk

|xij |∆i+∆j−∆k |xjk|∆j+∆k−∆i |xik|∆i+∆k−∆j

(3)
for some number fijk and xij = xi − xj . In a unitary
theory the fijk are real. These coefficients match with
those in the operator product expansion (OPE), which
can be written as

Oi(xi)Oj(xj) =
∑
Ok

Cijk(xik, xjk, ∂k)Ok(xk) (4)

=
∑
Ok

fijkC(xik, xjk, ∂k)Ok(xk). (5)

The sum runs over an orthonormal basis of primary op-
erators, and C is a power series that generates contribu-
tions from the desecendent operators of the correspond-
ing primary operator. It can be shown that for the OPE
of two scalars only even spin representations contribute
non-zero terms.

The four point function is the most interesting, and we
will provide a more in depth analysis in a later section.
Here, we claim that up to conformal transformations the
location of four points can be specified by two confor-
mally invariant cross ratios

u =
x2

12x
2
34

x2
13x

2
24

v =
x2

23x
2
14

x2
13x

2
24

. (6)

For a single scalar φ we therefore have that

〈φ(x1)φ(x2)φ(x3)φ(x4)〉 =
g(u, v)

|x12|∆φ |x34|∆φ
.

Permuting the xi leads to two constraints on g:

g(u, v) = g(u/v, 1/v), g(u, v) =
(u
v

)∆φ

g(v, u) (7)

the second of which is known as crossing symmetry. Plug-
ging the OPE into the expression for the four point func-
tion and using an orthonormal basis of primaries gives
the conformal block decomposition

g(u, v) =
∑
O

f2
φφOg∆OlO (u, v) (8)

for known functions g∆OlO that are eigenfunctions of the
quadratic casimir operator of the conformal group. They
depend analytically on spacetime dimension and can be
approximated well via series expansions in general d.

These results imply that one, two, three, and four point
functions can all be determined with knowledge of oper-
ator content, dimensionality, and OPE coeffients. These
quantities are referred to as CFT data. But not all values
of scaling dimensions and OPE coefficients lead to a con-
sistent CFT. Applying the crossing symmetry constraint
gives∑

O

f2
φφO(v∆φg∆OlO (u, v)− u∆φg∆OlO (v, u)) = 0. (9)

Defining F
∆φ

∆O,lO
(u, v) as the quantity contained in the

brackets allows us to interpret (9) as a sum of vectors
(functions of u and v) with positive coefficients that gives
zero. Contradicitons to situations such as the above exist
when there exists a linear functional α that is positive on
all the above vectors, and strictly positive on at least
one. It turns out that for most sets of naively picked
CFT data one can find a contradiction. In the case of
the Ising model, this will allow us to rule out almost all
choices of CFT data and determine critical exponents to
high precision.

The most common choice for α is to choose z such that
u = zz̄ and v = (1− z)(1− z̄) and set

α(F ) =
∑

m+n≤N

amn∂
m
z ∂

m
z̄ F (z, z̄)|z=z̄=1/2. (10)

Plugging in different possible values for {∆i, fijk} and
minimizing with respect to the parameters amn allows us
to rule out large sectors of the space of conformal field
theories.

II. BOOTSTRAPPING THE ISING MODEL

We review results on the application of this method to
the Ising model. The Ising model is characterized by two
relevant operators, the spin operator σ and the thermal
operator ε. They are related to critical exponents via
η = 2∆σ − d+ 2 and ν = 1/(d−∆ε).

Analyzing the Ising model with the conformal boot-
strap started with the the four spin correlator 〈σσσσ〉.
Fixing ∆σ, it is possible to get an upperbound for ∆ε

by demanding that α(F∆σ

∆ε,0
) ≥ 0 not have a solution for

any amn. This can be used to construct an upper bound
curve of ∆ε as a function of ∆σ [4].
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FIG. 1. Plot of the upperbound when applying the bootstrap
to the correlator 〈σσσσ〉, as described above. Taken from [4].
The kink on the boundary of the curve has operator dimen-
sions that correspond to those of the 3d Ising model.

The upper bound curves for the Ising model at d = 2, 3
have the common feature that the correct critical expo-
nents lie at the kink. This can be supported further by
bootstrapping mixed correlators, and adding the condi-
tion that σ and ε are the only relevant operators. These
conditions seem to be strong enough to pick out a sin-
gle pair of scaling dimensions, and lead to the most pre-
cise determinantion of critical exponents for the 3d Ising
model to date [2]. This powerful result seems to imply
that the Ising model at criticality is the unique confor-
mal field theory with two relevant operators, and that
the numerical bootstrap approach is powerful enough to
analyze it.

III. ANALYTICAL CONTINUATION TO
FRACTIONAL DIMENSIONS

The conformal bootstrap approach has the advantage
that, in most cases, it can be easily analytically contin-
ued to fractional dimensions, as d becomes only a param-
eter for which we can plug in arbitrary values. However,
we shall see that this naive analytic continuation breaks
down for d < 2.

To illustrate this, we examine in detail the four-point
identical scalar function 〈φ(x1)φ(x2)φ(x3)φ(x4)〉 given
in [4]. Translational symmetry can be used to set x1 = 0.
Rotational symmetry and dialation symmetry can be
used to set x3 = e1. Finally, invariance under special con-
formal transformations can be used to set x4 →∞. This
leaves x2, which by rotational symmetry can be fixed to
have the coordinates (x, y, 0, ..., 0). Defining z = x + iy
and u = zz̄ and v = (1 − z)(1 − z̄) provides a definition
for the crossratios and makes it clear why there are only
two degrees of freedom in the four point function, despite
there existing 4 coordinates in d dimensions.

This argument, however, breaks down in one dimen-

sion where there is only one degree of freedom for the
placement of x2. This forces z to be real, and gives a re-
lation between the crossratios, now given by v = (1−x)2

and u = x2. Functions of the crossratios are now re-
quired to satisfy F (u, v) = g(x), lowering the number
of constraints implied by crossing symmetry. This will
be important to keep in mind when we analyze recent
numerical results in d < 2.

For theories with d ≥ 2, the number of independent
crossratios is fixed at 2, and the only dependence on
d lies in the conformal blocks, which are analytic in d.
Therefore, it is trivial to analytically continue this pro-
cedure into non-integer d ≥ 2: the calculations are the
same as for d integer. In particular, this provides a non-
perturbative definiton of conformal field theory in frac-
tional dimension.

There is a problem, however. Recent studies in con-
formal perturbaion theory of the Wilson Fischer fixed
point show that unitarity is violated even in the first or-
der terms. Negative norm states were shown to appear,
as well as operators with complex scaling dimensions [5].
Unitarity is critical to the bootstrap approach, as it en-
sures dimensions are real, bounded below as well as the
positivitity of the squared OPE coefficients. However,
unitary violation only occurs at high dimension: ∆ ≥ 23.
It is plausible that these small instances of unitarity vi-
olation at high dimension are sufficiently suppressed so
that they do not impact the results of the bootstrap.

IV. INTERPRETATION OF NUMERICAL
RESULTS IN FRACTIONAL DIMENSIONS

The bootstrap approach can now be performed in frac-
tional dimension, and be compared to the epsilon expan-
sion, for example. This was done in [3] and the results
were found to be in strong agreement with the epsilon
expansion. The scaling dimensions were taken from the
kink on the boundary of the upper bound curve, as in
two and three dimensions.

This technique can also be applied to 1 < d < 2 by just
replacing d in the expression for the conformal blocks.
The situation here is much different here, however, as
found in [1]. Their results, in contrast, immediately
ruled out dimensions obtained from the curve found via
the epsilon expansion as early as d− 1.875. Their results
also disagreed with those found on fractal lattices, and
they also did not capture the d→ 1 limit: their results for
d = 1.000001 looked very different than the exact results
in d = 1. Finally, instead of a single kink appearing
where Ising scaling dimensions could be found, two kinks
now appear for dimensions immediately below 2. The
dimensions at both kinks disagree with what one would
expect for the Ising model, now in the disallowed region.

Thus, for below d = 2, the bootstrap fails almost all
checks for being consistent with the Ising model. There
have been a couple potential explanations floated in the



4

FIG. 2. Plot of the anomalous dimension of ε versus the de-
viation from the free theory in four dimensions. The black
dots indicate bootstrap calculations whereas the red curve in-
dicates results from the traditional epsilon expansion. Taken
from [3].

FIG. 3. Plot of the upper bound curve in d = 1.875. If
one looks closely, one can see two kinks instead of one. The
various predictions for Ising dimensions from other methods
are plotted in other colors. All of them are ruled out. Taken
from [1].

literature, most reducing to the claim that CFTs behave
differently in d = 2 and that could correspond to sudden
breaking of unitarity at low operator dimension for d < 2.

We propose a different explanation: the analytic con-
tinuation to fractional dimension is different in character
for d < 2 because of the crossover between two indepen-
dent cross ratios to one. In particular, we argue that
spacial dimension has two effects on the bootstrap: the
analytic effect on the conformal blocks as well as the
determination of the number of cross ratios. The numer-
ical calculations in [1] only accounted for the effect on
the conformal blocks. We now argue that our proposal
explains the odd numerical results.

The failure to capture the d → 1 limit makes sense,

since for any d > 1 there exist two independent crossra-
tios in the numerical calculations. The jump from two
crossratios in d = 1.000001 to one crossratio in d = 1 ex-
plains the failure of the two results to resemble eachother.

The sudden change of behavior at d = 2 also makes
sense, as d only effects the number of independent cross
ratios for d ≤ 2.

We also can propose why two kinks show up instead
of one. Our idea makes use of the fact that increas-
ing the number of independent crossratios increases the
number of constraints from crossing symmetry. The re-
sult is that by erroneously assuming that two indepen-
dent crossratios exist, extra constraints appear. These
could act as another upperbound, cutting off the kink
that corresponds to the ising model. The process leaves
two other kinks where the constraint intersects the up-
perbound curve.

FIG. 4. Illustration of the above argument for why two kinks
appear instead of one. The red dot corresponds to the Ising
model, but it is removed by an extra constraint. This leaves
behind two kinks, blue dots, neither of which resemble the
Ising model in operator dimension.

We believe that this proposal has the potential to ex-
plain odd behavior in 1 < d < 2. However, the best evi-
dence will be a correct calculation that takes the changing
number of independent crossratios into account quanti-
tatively and naturally. We are not sure how to approach
this for the non-perturbative bootstrap. Perhaps a full
understanding of representations of the conformal group
in fractional dimensions would allow for a better analy-
sis, rather than a non-constructive approach like analytic
continuation. Some open questions along these lines are
pointed out in [5], and they may be worth investigating
for this purpose.

V. CONFORMAL PERTURBATION THEORY

In this section, we present some thoughts on what a
perturbative expansion around d = 2 would have to look
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like. This seems like a natural way to better understand,
analyticaly, the behavior around d = 2 and may shed
light on earlier difficulties for d < 2.

Such an expansion is different in character than that
of the Wilson-Fischer fixed point near d = 4. For the
Wilson-Fischer case, the free field fixed point in d = 4
splits into the free field fixed point in d = 4 − ε and the
Wilson-Fischer fixed point. This comes about because
the renormalization group flow is generated by a φ4 per-
turbation that becomes relevant below d = 4.

The Ising model in d = 2, on the other hand, coin-
cides with a free Majorana fermion [6]. But for above
d = 2, it does not. The coincidence is the result fixed
point collision, not a splitting due to the turning on of
a relevant coupling. Therefore, we find it unlikely that
any techniques using a local perturbation to the action
for free Majorana fermions will succeed.

We therefore turn to conformal perturbation theory,
and try to set up a calculation similar to [7]. Here,
Rychkov and Tan calculate the first order correction in
the epsilon expansion using only CFT methods. They did
this by requiring that as ε → 0, all the operator dimen-
sions and OPE coefficients approach those of the free field
theory in d = 4. Except they also introduced another
condition, that ∆φ3 = ∆φ + 2, coming from the equation
of motion at the Wilson-Fischer fixed point. This allowed
them to distinguish the Wislon-Fischer CFT from that
of the free field.

We have the same problem for an expansion around
d = 2 (how do we distinguish between free Majorana
fermions in d = 2 + ε and the critical Ising model?) ex-
cept we don’t have an equation of motion that can help
us. Instead, we propose the condition that the only two
relevant operators are σ and ε, and no other operators

receive perturbative corrections that would cause them
to become relevant. As numerical results indicate that
the Ising model is the unique Z2 symmetric CFT with
only two relevant operators, we believe that in principle
this condition is strong enough to specify O(ε) correc-
tions around d = 2. We hope to pursue further steps in
this calculation in future work.

VI. CONCLUSIONS

In this work, we reviewed the conformal bootstrap ap-
proach to the Ising model. We examined technical as-
pects of the analytic continuation to fractional dimen-
sions, and proposed that not considering the effects on
the number on independent crossratios spoiled numerical
results for 1 < d < 2. We took a detailed look at the nu-
merical results, and provided potential explanations for
each major feature using our proposal. Finally, we talked
about how one might be able to gain analytic control of
the d ≈ 2 regime using CFT methods, despite the failure
of Lagrangian ones. It is an open question how to prop-
erly define and/or understand CFTs in 1 < d < 2, and
future work in this direction should be very interesting.
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