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Despite it has been almost a half century since Berezinskii, Kosterlitz and Thouless (BKT) pub-
lished their seminal work on phase transitions in 2D systems, BKT transition is still an active area
of research. BKT transition happens in vortex unbinding in 2D XY-model; dipole unbinding in
2D Coulomb gas and metal-insulator transition (MIT) in 1D chain. These three physically distinct
phenomena belong to the same universality class, hence can be interchangeably mapped one into an-
other. In this work, we show mapping procedure from 2D XY-model into 1D chain with sine-Gordon
potential. We will focus on one advantage of performing this mapping; ability to assign correct core
energies to topological defects in these systems. This is motivated by recent experimental works,
which report significantly different defect core energies than predicted by XY-model.

I. INTRODUCTION

One of the lessons we learnt in class is dimensionality
plays a key role in identifying the nature of order in var-
ious systems. In 3D systems there is a true long-range
order at low temperatures and thermal fluctuations de-
stroy the order, making two-point correlation functions
decay exponentially at high temperatures. For systems
of d 6 2 with continuous symmetry, as Mermin and Wag-
ner showed [5], there cannot be a true long-range order
due to high level of thermal fluctuations in these dimen-
sions. In 2D XY model, correlations exhibit power law
decay at low temperatures, while above certain temper-
ature, correlations decay exponentially. Berezinskii [2],
Kosterlitz and Thouless [3], introduced topological de-
fects to explain the nature of this phase transition; from
quasi-long-range order to disorder. This transition is
called Berezinskii-Kosterlitz-Thouless (BKT) transition
and still remains to be a topic of active research.

One of the most exciting areas to study BKT transition
is 2D or layered 2D (quasi-two-dimensional) supercon-
ducting systems. 2D XY-model was extensively studied
to capture the nature of BKT transition in these systems.
Although the model was successful in correctly identify-
ing the critical behavior, recently there emerged some
discrepancies between theory and experimental findings
[6], which we will discuss below.

In this report, we will map BKT transition in 2D XY-
model into (1+1)D quantum phase transition in sine-
Gordon model. One of the several reasons of doing this,
sine-Gordon model gives a flexibility in assigning a core
energy to a vortex, whereas in XY-model it is defined
solely by a coupling constant between spins. We will
also discuss briefly a recent experimental work [6], which
demonstrates a BKT transition in copper oxide ultrathin
films, a high-Tc superconductor.
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II. MAPPING ON SINE-GORDON MODEL

A sine-Gordon model can be used to describe quantum
phase transition in 1D systems. One can find a vast num-
ber of works [1] that show analogy between 1D quantum
system and 2D classical cases as vortex-unbinding in su-
perfluids. In this section, we will go through steps of this
mapping.

We will start with low temperature phase of XY-model.

−βHXY = J
∑
<i,j>

~σi · ~σj = J
∑
<i,j>

cos(θi − θj) (1)

where θi is angle of a given spin with respect to some
direction, and < i, j > means nearest neighbours.

At low temperatures, we assume θi varies very slowly
within order of lattice constant a and we can rewrite
Hamiltonian in the following form [4] by expanding co-
sine:

−βHXY =
J

2

∫
d2x(∇θ(~x))2 (2)

If there exist vortices in the lattice, then following
equality is satisfied for a closed loop integral around the
defect: ∮

(∇θ) · ds = 2π
∑
i

qi (3)

with qi being the charge, a winding number of a given
vortex.

In one of the Problem sets, we have explicitly shown
that a interaction between a pair of vortices is Coulombic
and system of large number of well separated defects we
can treat as a 2D Coulomb gas. We have derived an
expression for total energy of system of vortices:

−βH = πJ
∑
i 6=j

qiqj ln(
~ri − ~rj
a

) +
π2J

2

∑
i

|qi| (4)

The first term in above expression describes interac-
tion, second term stands for sum of core energies of de-
fects. Hence in 2D XY-model core energy is solely fixed
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by coupling constant J and reads as:

Ecore =
π2J

2
(5)

In the following, we will make two assumptions: i)
defects are of only qi = ±1; ii) number of positive and
negative charges are equal, a neutrality condition. Thus
partition function reads as:

Z =

∞∑
N=1

1

(N !)2
· · ·∫

D~r exp

[
− βNEcore + βπJ

∑
i 6=j

qiqj ln(
~ri − ~rj
a

)

]
(6)

where N is total number of defects. To compensate for
double counting, we need to divide by (N !)2. We define
defect fugacity as:

y0 = e−βEcore (7)

and partition function reads:

Z =

∞∑
N=1

1

(N !)2
yN0

∫
D~r exp

[
βπJ

∑
i 6=j

qiqj ln(
~ri − ~rj
a

)

]
(8)

Next we will write a partition function for 1D chain,
and analogy between XY and sine-Gordon models will
become apparent.

Hamiltonian for 1D chain of length L [1]:

−βHsG =
vs
2π

∫ L

0

dx

[
K(∂xθ)

2+
1

K
(∂xφ)2− 2gu

a2
cos(2φ)

]
(9)

where K is the Luttinger liquid parameter, vs is the ve-
locity of 1D fermion, last term of the integrand is a sine-
Gordon potential with gu defining strength of the poten-
tial.

Next we will show that a partition function of φ will
have exactly the same form as in Eq.(8). For this we
integrate over θ, and partition function for φ, will be:

Z =∫
Dφe−W

∞∑
l=0

1

l!
d~r1 · · · ~rl(

gu
2π

)l cos(2φ(~r1)) · · · cos(2φ(rl))

(10)

with:

W =
K

2π

∫
dx(∂xθ)

2 (11)

By decomposing cosines into exponential functions and
inspecting that the expression for partition function Eq.
[10] is basically an average of exponential functions with
Gaussian weights:〈

exp(2i
∑
i

εiφ(~ri))

〉
= exp

[
2K

∑
i<j

εiεj ln(
rij
a

)

]
(12)

Here we have denoted a variable by εi, which actually
comes from decomposition of cosine:

cos(2φ(~ri)) =
∑
εi=±1

e2iεiφ(~ri)

2
(13)

Finally, partition function, with some modifications of
dummy variables will be:

Z =

∞∑
N=1

1

(N !)2
(
g

2π
)N
∫
D~r exp

[
2K

∑
i<j

ln(
~ri − ~rj
a

)

]
(14)

By comparing equations [8] and [14], we can see that
2D XY-model can be mapped into 1D chain with sine-
Gordon potential, given:

K = πβkBJ (15)

g = 2πy0 = 2πe−βEcore (16)

The important message that should be taken from this
mapping is that in XY-model, core energy of a vortex is
fixed by interaction coupling constant, while after map-
ping the core energy is defined by sine-Gordon potential
strength gu, which can be used to as a fitting parameter
for core energy. This flexibility of assigning an energy
to the defect is actually hinted by many experiments,
i.e. experimental results mostly deviate from XY-model
predictions.

III. SUPERFLUID DENSITY JUMP

One of the direct demonstrations of BKT transition is
a sudden jump of superfluid density at T = TBKT . The
analysis of spin system that we have started our discus-
sion with, we can actually directly apply to superfluid
in two dimensions. So in this case, J will play a role of
superfluid stiffness and we will show that J disappears
suddenly at T = TBKT , which is also indication of super-
fluid density ns jump.

To study the phase transition, we look at coupling con-
stants K and g under renormalization group flow, whose
recursion relations reads as [1]:

dK

dl
= −K2g2 (17)

dg

dl
= (2−K)g (18)

The stiffness (from Eq. [15]) of superfluid is given as:

J =
TK(l)

π
(19)

As clearly seen from above equations, behavior of RG
flow changes at K = 2. For K > 2 the vortex fugacity
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goes to zero (g → 0), consequently K will have some
finite value and stiffness J∗ as well. Instead in the case
ofK < 2, g flows to infinity, K flows to zero, consequently
stiffness drops to zero as well. Hence at point (2, 0) in
the (K, g) plane, there occurs a phase transition, where
superfluid stiffness J jumps from some finite value J∗ to
zero.

K(TBKT ) =
πJ(TBKT )

TBKT
= 2 (20)

The relation between stiffness and temperature at the
transtion J(TBKT ) = 2TBKT

π is a so called universal re-
lation. One of the things that we have achieved by map-
ping into sine-Gordon model is that now stiffness at the
transition is not fixed, as opposed to original result of
Kosterlitz and Thouless [3]. One assumption we made
implicitly is superfluid density drop is originating only
from vortex anti-vortex unbinding, while in real mate-
rials there are other contributions, such as quasiparticle
excitations. For the sake of simplicity we neglected those
effects.

FIG. 1. Figure 1. Superfluid density as a function of temper-
ature [6]

IV. EXPERIMENTAL WORK

Hetel et al.[6] demonstrates BKT transition in
ultrathin high-quality copper-oxide superconductor,
Y Ba2Cu3O7−δ. They use two-coil mutual-conductance
method to measure the penetration depth λ, of the sam-
ple. The superfluid density is obtained from penetration
depth measurements with relation ns ∝ 1/λ2. A direct
signature of BKT transition, as was predicted by Nelson
and Kosterlitz [7], there must be a sudden sharp drop
in superfluid density at the critical point. In this exper-
imental work authors show this phenomenon. We note
that, cuprate superconductors have many other compet-
ing phases and it is hard single out only one contribution.
As a result of these effects, the superfluid density drop is
broadened (see FIG. 1). The things we want to empha-
size are i) superfluid density drop is mostly dominated
by BKT transition; ii) estimate of vortex core energy
by XY-model is larger by a factor of 5 [6] than experi-
ment. This indicates the need for more rigorous theories
beyond XY-model, and our approach, though not new,
can serve as one possibility. Obviously, in strongly cor-
related materials, as cuprate superconductors, things get
more complex. To treat these systems, one needs to take
into account: quantum phase fluctuations [6]; Josephson
coupling between copper oxide layers; quasiparticle exci-
tations and etc.

V. CONCLUSION

In this report we show one limitation of XY-model for
the description of cuprate superconductors; the core en-
ergy of a vortex if fixed and deviates significantly from
experimental results. To address this issue, we provide a
framework, where mapping from 2D XY-model into 1D
sine-Gordon model can give one a flexibility of assigning
a correct core energy.
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