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Vortices in the 2D XY model provided one of the first examples of topological defects in materials.
I first review the foundational theory of vortex interactions, repeating Kosterlitz and Thouless’s
energy-entropy argument, calculating how vortices modify the effective interaction between spins,
and completing the renormalization group analysis of the effective coupling. I then extend the
renormalization group equations to explain the behavior of finite lattices, and perform Monte Carlo
simulations of the XY model on finite lattices of sizes up to L = 512. I estimated the critical
temperature at Tc = 0.8967± 0.0012.

I. INTRODUCTION

The 2D XY model is a simple model that features a vor-
tex unbinding transition describing a change from quasi-
long range to no order.The theory of the transition was
first suggested by Kosterlitz and Thouless in 1974, and
it successfully predicted a measured jump in the den-
sity of superfluid helium [6] [8]. It has since then found
numerous applications in describing two-dimensional sys-
tems such as liquid crystals, Josephson junction arrays,
and superconducting fluid films [1]. The theory was the
first investigation of the effect of topological defects in
materials. Due to its structural simplicity, it forms an
excellent starting point for gaining understanding of how
the interactions between defects affect system properties.

II. VORTEX CONFIGURATIONS IN THE XY
MODEL

The XY model describes two-component spins ~s on a two
dimensional square lattice of size L and spacing a. The
model is characterized by the nearest-neighbor interac-
tion Hamiltonian

−βH = −βρs
∑
<i,j>

~si · ~sj = −βρs
∑
<i,j>

cos(θi − θj) (1)

. In this expression, β is the inverse temperature, θi
are the angles of the spins relative to some reference
direction, and the summation is conducted over nearest-
neighbor bonds between spins. The XY model is often
used to describe the phase of the wavefunction of thin
films of superfluid helium, for which the gradient ∇θ
is related to the probability current and the velocity
field of the superfluid [7]. The other frequently defined
parameter is the coupling constant K = βρs, which is
proportional to the inverse temperature.

If the field θ is smoothly varying, then the difference θi−
θj between nearest nieghbors is always small, and we can
approximate cos(θi − θj) = 1− 1

2 (θi−θj)2+O((θi−θj)4).
This in turn can be re-written in terms of the gradient of

FIG. 1: A vortex of charge q=1; reproduced from [3]

θ when we move from discrete to continuous notation:

−βH = −βEg −
1

2
βρs

∫
d2~r(∇θ)2 (2)

The local minima of the Hamiltonian are configurations
of spins that satisfy δH

δθ = 0, so these configurations

satisfy Laplace’s equation ∇2θ(~r) = 0 at all but a
few isolated points ~ri.What Kosterlitz and Thouless
suggested in their 1973 paper [3] was that apart from the
uniform ground state and analytic fluctuations around
it, the minimum configurations of the XY model could
also include vortices at locations ~ri. The first conse-
quence of this idea was the realization that competition
between vortex energy and entropy at different tempera-
tures would characterize distinct phases of the XY model.

A vortex such as that in Figure 1 is identified by
the property that its contour integral is nonzero:∮
dθv(~r) = 2πq for some integer q; q must be an integer

because the angles at the start and ending points must
coincide modulo 2π. The integer q is called the winding
number or charge of the vortex, and vortices with
q = ±1 are called elementary. The winding number is a
topological invariant, and it is impossibleto continuously
deform a configuration with given winding number into
a configuration with a different one. For this reason, it
is not possible to deform a vortex configuration into the
uniform ground state.
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We can separate the field θ into a potential component
θsw whose contour integral is everywhere zero, and a
vortex component θv whose contour integrals around
points ~ri are 2πqi.

Following Kosterlitz’s original presentation [4], because
θv satistifes Laplace’s equation we can introduce a con-
jugate field φ such that θv + iφ is a locally analytic func-
tion satisfying the Cauchy-Riemann relations, and use
Green’s theorem to relate:∮

dθ(~r) = 2π
∑
i

qi

=

∮
(∂xθvdx+ ∂yθvdy) =

∮
(∂yφdx− ∂xφdy)

=

∫∫
−(∂2

yφ+ ∂2
xφ)dxdy =

∫∫
−∇2φdV

Thus ∇2φ(~r) = −2π
∑
i qiδ(~r − ~ri) = −2πnv(~r), and

is proportional to vortex distribution function nv(~r).
Using the lattice Laplacian Green’s function G(~r) =
1

2π (ln(R/a)− ln(|~x|/a) + c, [2] φ can be written:

φ(~r) = −2π

∫
d2~r′nv(~r

′)G(~r − ~r′)

= −
∑
i

qiδ(~r − ~ri) ln(L/a) +
∑
i

qi ln(|~r − ~ri|/a) + c

The Cauchy-Riemann relations imply that (∇φ(~r))2 =
(∇θv(~r))2, so using integration by parts, we can express
the vortex Hamiltonian:

−βHv = −βρs
2

∫
d2~r(∇φ)2 =

βρs
2

∫
d2~rφ∇2φ

= −β
∑
i

Ecoreq
2
i + βρs(2π)

∑
i6=j

qiqj ln(|~ri − ~rj |/a)

− ln(L/a)(
∑
i

qi)
2

The first term describes the core energy of each vortex,
and the second describes a logarithmic interaction
between different vortices. The third, however, describes
the energy of the total vortex field away from the
cores, and grows logarithmically with the system size.
Since the configurational entropy of each vortex scales
as S ∼ ln

(
L2/a2

)
, the total free energy involves a

competition between the logarithmically growing vortex
energy and entropy. At low temperatures, a single
isolated vortex is energetically prohibited, while at high
temperatures, single vortices can proliferate. Charge
neutral configurations

∑
i qi = 0 are always much more

likely.

The change in system properties between high and low
temperature regimes is indicative of a phase transition.
In two dimensions, spin wave fluctuations destroy low-
temperature long-range order, and spin-spin correlations

decay algebraically as
〈
~s(~0) · ~s(~r)

〉
≈ (a/r)(2πK)−1

[1].

The transition is thus between between a low tempera-
ture system with quasi-long range order and a disordered
high temperature system.

III. VORTEX INTERACTIONS:
RENORMALIZATION GROUP

Vortices reduce the effective coupling constant between
spins. Just as internal dipoles shield external charges,
leading to a dielectric constant ε describing a reduced
interaction C(x)/ε, internal vortices shield external,
yielding an analagous ε = K

KR
. The details of the

calculation of this interaction for two pairs of elementary
vortices are laid out very clearly in [1], section 8.3.

Another way of describing this effect is by calculating
how vortices affect the temperature-dependent spin wave
stiffness ρRs , defined as the change in the free energy
due to an applied gradient. [2] Let θ(~x) be a set of spin
angles describing fluctuations around a spatially uniform
state; the spatial average of its gradient is zero. We can
apply a gradient by sending θ(~x) → θ(~x) + ~v · ~x. The
resulting change in the free energy defines the spin-wave
stiffness: F (~v) − F (0) = 1

2V ρ
R
s v

2. The spin-wave stiff-
ness is also known as the helicity modulus Υ, and, when
describing superfluid helium, as the renormalized density.

We can evaluate ρRs to lowest order in v:

∆F (~v, 0) =
1

2
L2ρsV

2 − T ln tr

[
exp

[
−ρs
T

∫
d2xviui

]]
=

1

2
L2ρsV

2

− ρ2
sβ

2

∫
d2xd2x′ 〈ui(~x)uj(~x

′)〉 vivj +O(v4)

The spatial average of the gradient of θsw was set to zero,
so only the vortex portion∇θv contributes. Since∇2θv =
0, and the system is translation and rotation invariant,
the Fourier-transformed correlation can be written

〈∂iθv(q1)∂jθv(q2)〉 = (2π2)∂2(q1 + q2)(δij − q̂iq̂)f(q)

for some function f . Then, since ∇ × ∇θv = 2πnv(~x),

∂jθv =
−iεjiqi
q2 2πnv(q), and

∂iθv(q)∂iθv(−q) =
1

q2
(2π)2nv(q)nv(−q)

So we can write ρRs in terms of Fourier-space correlations
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of the vortex density:

ρRs = ρs − ρ2
s/T

∫
d2x 〈∂iθv(x)∂iθv(0)〉 (3)

= ρs − (2πρs)
2/T lim

q→ 0
〈nv(q)nv(−q)〉 /q2 (4)

= ρs − (2πρs)
2/T lim

q→ 0

∑
i,j

(~ri − ~rj)2 〈qiqj〉 (5)

In the low temperature regime, the fugacity y =
exp[−Ecore/T ] is small, and the lowest order contribu-
tion in y to the vortex charge correlation comes from a
single pair of elementary vortices with opposite charge.
This results in 〈qiqj〉 = −2y2(|~ri − ~rj |/a)−2πρs/T . Divid-
ing by T to relate ρRs to KR, we finally have

KR = K = −4π3y2

∫ ∞
a

dr

a
(r/a)3−2πK (6)

The relationship between the renormalized spin wave
stiffness ρRs and the effective coupling Keff was argued
by analogy here, but can be shown more rigorously by
working out the spin correlation function in depth [5] [2].
A renormalization group procedure can be applied to (6)
by dividing the integral into two pieces, from a to eδ` and
from aeδ` to ∞. The RG flows that result are{

dK−1

d` = 4π3y2(`) +O(y4)
dy
d` = (2− πK(`))y(`) +O(y3)

(7)

The RG procedure effectively coarse-grains over the vor-
tex pairs at smallest separations. This reduces the vortex
density, and reduces the effective stiffness, since vortices
are screened by hidden pairs. If K > Kc = 2

π , then
the RG flows tend towards y(` = ∞) = 0. This implies
that the effective interaction parameter has a square root
singularity in T [? ]:

Keff =
2

π
(1− b 2

π

√
Tc − T (8)

The critical temperature can thus be associated with the
largest temperature for which the flow towards y(` =
∞) = 0 occurs. Since the RG procedure shows that the
effective interaction can be written as a function of the
renormalization dependent terms K(`), y(`), taking the
limit `→ ∞ implies KR = f(K(` =∞)), and taking the

limit T → Tc from below results in K−1
R =

ρRs
T tending

towards π
2 universally.[6]

IV. FINITE SIZE EFFECTS ON THE HELICITY
MODULUS

On a finite lattice, the energy of a single vortex l̃nL
is finite, and vortices can only interact up to a max-
imum length scale L. Imposing periodic boundary
conditions mimics some aspects of an infinite lattice by
strongly discouraging non-neutral vortex configurations,

FIG. 2: Solution curves for Eq (9) for C = 0, 1, and 2. Note
that at C = 0, the curve never intersects the x-axis.

but significant finite-size effects remain. Since the
renormalization group flow equations describe how the
interactions between and core energies of vortices are
adjusted under a change of scale, they also indicate
how these parameters are adjusted at finite length scales.

Defining a rescaled coupling constant x = 2
πK
−1, the RG

equations become dx
d` = 8π2y2, dyd` = 2(1− 1

x )y, which are
solved by the curves

x− lnx− 2π2y2 = C (9)

for constants C depending on initial conditions. [14] This
then means we can rewrite

dx

d`
= 4(x− C − lnx)

. If K−1 = T < π
2 = Tc then in the ` → ∞ limit,

the fugacity y is driven towards zero, and dx
d` = 0. Thus

we can linearize around the fixed point x̄ = x(` = ∞)
satisfying x̄− C − ln x̄ = 0. Setting x = x̄+ u, we have:

du

d`
= 4(u− u

x̄
+
u2

2x̄
) +O(u3)

ln(u) = ln

(
u

2x̄2 + 1− 1
x̄

)
+ 4`+ c′

x(`, T ) = u+ x̄ = x̄

(
1 +

2(1− x̄)

1− c′′ exp
[
−4`(1− 1

x̄ )
])

The equation (9) has no solutions for C < 1, so C = 1
must be the constant for the equation at Tc. We can
therefore similarly expand dx

d` = 4(x−1− lnx) about the
fixed point x̄c = 1, resulting in

xc(`, T = Tc) = uc(`) + 1 = 1− 1

2(`+ c′′)′

The values c′′, c′′′ in the above expressions are constants
of integration.
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If we identify e` = b with the linear system size L, and
replace x with x = 2

πK
−1 = Kc

K , and define K∞(T ) =
K(L =∞, T ) we conclude with:

K(L, T )−1 = K∞(T )−1

(
1 +

2(1−Kc/K∞(T ))

1− cL4K∞(T )/Kc−4

)
(10)

K(L, Tc)
−1 = K−1

c

(
1− 1

2(lnL+ c)

)
(11)

V. MONTE CARLO SIMULATIONS

A. Procedure

I simulated the XY model with the simple Hamiltonian
−H/T = −1/T

∑
<i,j> cos(θi − θj), on lattices of sizes

L = 16, 32, 64, 128, 256, 512 with periodic boundary
conditions.

I used the Monte Carlo procedure in order to sample
configurations with their associated Boltzmann weight,
and I implemented Wolff’s cluster algorithm for each
Monte Carlo step. This algorithm outperforms the com-
mon Metropolis single spin-flip alogirthm near the critical
temperature, where its correlation time τ can be a factor
of 1000 smaller [10]. At each step, the algorithm picks
at random a direction n̂ and a seed spin that will form
the start of a cluster c. Then the algorithm iterates over
the nearest neighbors of each spin added to the cluster
c. If two neighboring spins point in the same direction
relative to n̂, ie. (~si · n̂)(~sj · n̂) > 1, then the neighboring
spin is added to the cluster with a proportional proba-
bility Padd = 1 − exp[−2/T (~si · n̂)(~sj · n̂)]. At the end
of the step, all spins in the cluster are flipped over the
line perpendicular to n̂. The correlation time per spin is
calculated by weighting the Wolff step correlation time
by the number of spins in the cluster:

τ = τsteps
〈c〉
L2

(12)

I iniated all models with a random configuration of
spins, and prior to taking measurements, I allowed all
models to thermalize by running 100L Monte Carlo
steps. This procedure ensures that measurements are
taken only after each configuration has “cooled down”
from its disordered state into a state in the microcanon-
ical ensemble for given temperature. I estimated the
number of steps to scale linearly in the lattice size L, (as
opposed to quadratically for the Metropolis algorithm)
because near the critical temperature, clusters in a 2D
spin system will percolate, and thus contain on the
order of L spins. 100 L Monte Carlo steps should thus
be approximately equivalent to 100 full sweeps of the
lattice, and sufficient for all models to reach equilibrium
configurations.

FIG. 3: The correlation time constant τE for the calculations
of system energy.

I calculated correlation times for each model by weighting
the correlation time per step of the configuration ener-
gies τEstep by the average fractional cluster size as in Eq.
(12). The correlation time for an observable O is given
by integrating the autocorrelation function χ, which can
be calculated for a total number of steps T as [10]:

χ(t) =
1

T − t

T−t∑
t′=0

O(t′)O(t′ + t)

− 1

T − t

(
T−t∑
t′=0

O(t′)

)(
T−t∑
t′=0

O(t′ + t)

)
(13)

The resulting correlation times are shown in Figure 3.
All the correlation times were O(1) in L, and correlation
effects were neglected in the following calculations.

The helicity modulus Υ(T ) ∼ ρs(T ) ∼ Jeff(T ) can be

calculated on a finite lattice by −∂
2f(v)
∂v2 |v=0 for a twist

~v = vx̂. Then taking two derivatives of f = − lnZ
L2 , with

Z =

∫
d[θ] exp

− 1

T

∑
<i,j>

cos(θi + vxi − θj − vxj)


and setting v = 0, gives the helicity modulus as an ob-
servable [14]:

Υ =
1

L2
(

〈 ∑
<i,j>

cos(θi − θj)(x̂ · ε̂ij)

〉

− 1

T

〈
(
∑
<i,j>

sin(θi − θj)x̂ · ε̂ij)2

〉
(14)

The factors ε̂ij indicate the direction of the bonds
i − j. I evaluated Eq. (14) for each of N recorded
Monte Carlo time steps, and then bootstrapped this
calculation by selecting a random sample of N values
with replacement N times. Bootstrapping replicates
the underlying probability distribution for Υ, and thus
allows statistical errors to be straightforwardly obtained
by measuring the standard deviation [10].
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FIG. 4: The helicity modulus Υ, as a function of lattice size
L and temperature T . The universal relation Υ(L, T )/L = π

2
has been plotted in black.

B. Results

Figure 4 shows the resulting plot of the helicity mod-
ulus versus temperature at varying lattice sizes. The
measured temperatures were chosen to be close to
the consensus from previous numerical simulations,
Tc ∼ 0.893 [14][15][16]. For the largest lattice size,
L = 512, I simulated only temperatures in the narrow
range from T = 0.8 to the zero Υ point near T = 0.99, in
order to save on memory space and time costs, while for
the other lattice sizes L = 16, 32, 64, 128, 256 I simulated
from T = 0.7 to the zero Υ point near 1.09 or 0.99.
Above the critical temperature, the helicity modulus
vanishes and finite size effects are more significant. In
order to increase statistical precision in this region, I ran
10,000 Monte Carlo steps above T = 1.0, and only 1000
below.

The rapid diminishing of the helicity modulus at the
critical temperature is clearly visible in Figure 4. Lattice
size effects are considerably less significant in the region
below the critical temperature, where all four sizes
coincide, but are important in determining the location
of the critical drop-off. The helicity modulus fluctates
about Υ = 0 in the region above the critical temperature.

Following the procedure of Schultka and Manousakis in
[14], I fitted the resulting Υ(L) for fixed T in the range
(0.8, 0.9) to the equation (10), with the integration con-
stant c as a free parameter and Kc = 2

π . Like Schultka
and Manousakis, I found that attempting to fit the the
equation above the expected critical temperature led

T K(L =∞, T ) c

0.80 1.117± 0.003 0.456± 0.236

0.81 1.140± n/a −1064000± n/a

0.82 1.161± 0.007 1.027± 1.32

0.83 1.190± 0.007 1.477± 2.26

0.84 1.230± 0.006 0.920± 0.36

0.85 1.246± 0.008 28.950± 501

0.86 1.289± 0.018 −3177000± 3.62 · 1012

0.87 1.326± n/a −8852000± n/a

0.88 1.392± 0.022 1.797± 0.96

0.89 1.450± 0.020 4.575± 7.10

TABLE I: Fitted values of K(L =∞) for various values of T .

FIG. 5: The fitted values of K(L =∞, T ), and the fitted form
(8), with Tc = 0.8967 ± 0.0012, and b = 0.881 ± 0.007. The
errorbars for T = 0.81 and 0.87 were manually assigned.

to very large uncertainties and poor fits, so I neglected
them; the equation was derived under the assumption
that T < Tc, so this behavior is not unexpected. The
results of this fit are listed in table I and shown in figure
5. The fitted values of c vary considerably, suggesting
that the fit is not very precise; however, changes to
c don’t have large effects on the shape of the curve
K(L = ∞, T ) near the critical temperature. For two
values, T = 0.81 and T = 0.87, the fit in c was very poor
and scipy’s curvefit function failed to return a covariance
matrix for the fit.

I finally fitted the curveK(L =∞, T ), to the scaling form
eqrefeq:Keff to get an estimate of the critical temperature
at infinite lattice size, Tc = 0.8967±0.0012, which is close
to the estimated values by previous works. The constant
b was fitted to be 0.881± 0.007. Systematic errors, such
as insufficient thermalization or missed subleading finite
size corrections [16] mean the actual uncertainty on this
result is significantly larger than stated.

VI. CONCLUSION

Up to statistical fluctuations, the analytic forms for XY
model properties and numerical results coincided. The
numerical results could be significantly refined by sam-
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pling a larger subset of lattice sizes, and by increasing
the number of Monte Carlo measurements recorded. The
process of approaching the same quantity ρRs = Υ from
multiple points of view expanded my understanding of
the applications of the renormalization group procedure,
and of how temperature, system size, and interaction
strengths affect the configurations of the XY model.
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