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We examine time-reversal-symmetry breaking across scales in a two-temperature system, where
two species of brownian particles interact while maintaining contact with different thermal reser-
voirs. Particles coupled in this way have been seen to phase separate, with cold particles forming
dense clusters surrounded by a dilute gas of hot particles. While the equilibrium theory seems to
describe the phenomenology of the phase separation, this phase separation in the absence of at-
tractive interactions is an inherently out-of-equilibrium phenomenon. Looking to salvage the lost
non-equilibrium character of our system, we find that detailed balance is indeed broken at both
the microscopic scale and on phase interfaces at the macroscopic scale. We observe ratchet cur-
rents when two particles of different temperatures are placed in an asymmetric landscape, via a
mechanism similar to ratchet currents in self-propelled particles.

I. INTRODUCTION

In the real world, broken thermal equilibrium is the
rule rather than the exception. In recent years, there
has been an explosion of research on the statistical me-
chanics of out-of-equilibrium systems. One very active
area of research is that of active matter, where thermal
equilibrium is violated at the microscopic scale by inject-
ing individual degrees of freedom with energy that allows
them to self-propel [1], rotate [2], process information [3],
and more.

One thing that non-equilibrium systems have in com-
mon, and which is impossible in equilibrium systems, is
the existence of nonzero steady-state fluxes in their con-
figuration spaces [4]. In active matter, such fluxes occur
in the microscopic configuration spaces of individual de-
grees of freedom, and whether such fluxes survive coarse-
graining to generate macroscopic motion (e.g. ratchet
currents [5], shear cycles [6], etc.) is an important ques-
tion.

One more subtle type of thermal equilibrium violation
occurs when you take equilibrium systems at two dif-
ferent temperatures, and couple them while maintaining
their coupling to their own thermal reservoirs. For in-
stance, one may consider species A and B of pairwise
interacting Brownian particles, governed by Langevin
equations of motion with differing noise strengths:
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(Throughout this paper, we assume all particles have

equal mobilities, which we set to 1.)
Such a system was investigated analytically by Refs. [7,

8] and through simulations by Refs. [9, 10]. It was found
that the two species tended to phase separate, with hot
particles forming a dilute gas surrounding clusters of cold
particles. See a snapshot of our simulations near the
critical point in Fig. 1. Remarkably, however, this phase
separation can be described by the minimization of an
effective equilibrium free energy.
It is known that many active matter systems pos-

sess effective equilibrium free-energy functionals that de-
cently describe the dynamics at the macroscopic scale
(e.g. Ref. [11]). However, there often remain signatures
of broken thermal equilibrium such as non-vanishing en-
tropy production rates near phase interfaces [12, 13] or
ratchet currents in the presence of an external potential
[5].
In this paper, we ask the question: what happened to

the broken thermal equilibrium in the two-temperature
system, and where can it be recovered? In Sec. II, we
examine the effective equilibrium phase separation and
compare existing analytic results [7, 8] with simulations
[9]. In Sec. III we zoom into the micro-scale and investi-
gate steady-state currents that occur in two-particle two-
temperature systems, where we find the emergence of a
ratchet current in the presence of an asymmetric exter-
nal potential. An analogy is drawn between self-propelled
particles and a pair of hot and cold particles. We then in-
vestigate the mesoscopic non-equilibrium terms that arise
at the scale of the field dynamics once one considers 3-
body interactions [8], and the consequential generation
of mesoscopic currents.

II. PHASE SEPARATION: EFFECTIVE
EQUILIBRIUM

In Refs. [7, 8], they consider a mixture of two species
of particles, with two different temperatures. They inte-
grate the master equation over all but one coordinate and
obtain a hierarchy of equations, which they truncate by,
crucially, neglecting three-body interactions. Then, they
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FIG. 1. Snapshots of particle configurations in simulations we performed of a binary mixture of hot (orange) and cold (dark
blue) particles with a temperature ratio of 0.01, after a simulation time t = 104a2/TH. As the baseline concentrations NH/L2

and NC/L
2 are increased, the particles pass from the disordered phase (left) through the critical point (middle) into the ordered

phase (right). See Fig. 4 for a plot of the mean-field free energy at these points (yellow, dashed black, and purple respectively).

perform a gradient expansion on the density fields (con-
verting a convolution with the force kernel to multiplica-
tion by force moments or “virial coefficients”). These cal-
culations give a deterministic Model B (or Cahn-Hilliard)
equation of motion for each species A interacting with
members of all species, indexed by γ

∂cA(r⃗, t)

∂t
= ∇ [cA(r⃗, t)∇µA(r⃗, t)] (2a)

µA = TA ln cA +
∑
γ

TAγ

[
BAγcγ + ΛAγ∇2cγ

]
(2b)

with pairwise effective temperature

TAγ =
TA + Tγ

2
(3)

and coefficients

BAγ =

∫
(1− e−uAγ(r⃗)/TAγ )dr⃗ (4a)

ΛAγ =
1

6

∫
r2(1− e−uAγ(r⃗)/TAγ )dr⃗. (4b)

Such theories describe separation between two phases,
e.g. between a polymer and a solvent. The fact that this
phase separation happens, in the absence of attractive
interactions, is a signature of the non-equilibrium nature
of our system, much like motility-induced phase separa-
tion in self-propelled particle suspensions [11]. Indeed,
we will see that the mechanism for such phase separation
is due to the existence of nonzero microscopic fluxes in
the joint configuration space of a pair of hot and cold
particle, in the same way that there is a nonzero flux in
the joint configuration space of a self-propelled particle’s
position and orientation.

Remarkably, these chemical potentials µA, µB can be
expressed as the functional derivatives of an effective free
energy µγ = δF/δcγ , where
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∫
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∑
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+
1

2
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]
. (5)

Consequenty, at this level, there remains no trace of
detailed balance violation. As a corollary, the system ad-
mits an equation of state (derived in Refs. [7, 8]), has
zero entropy production (see Ref. [12]), and exibits no
steady-state currents in configurational space. In partic-
ular, this theory predicts that this system will exhibit
no macroscopic spatial currents or “ratchet currents,”
even in the presence of an asymmetric potential (which
induces ratchet currents in self-propelled particles, e.g.
Ref. [5]).

One can connect this with free energies obtained from
top-down approaches by expanding around reference con-
centrations c0A and c0B and defining deviations ϕA =
cA − c0A and ϕB = cB − c0B . Keeping only up to 4th
order in the ϕ’s, we get a ϕ4 field theory with two order
parameters coupled at the quadratic order:
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with parameters
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We now investigate the phase diagram of this theory.

A. Mean field phase diagram

First consider homogenous phases (∇ϕA = ∇ϕB = 0)
and ignore fluctuations. The condition of stability of a
homogenous phase is

∂f
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= 0 (8)
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The first condition is always true in the disordered
phase (ϕA = ϕB = 0). The spinodal line bounds the
region where the free energy of the disordered phase is
concave up. It is given by
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When this quantity is positive, the free energy is both
stationary and stable at ϕA = ϕB = 0.
In Ref. [9], they have performed a suite of simulations

with 300 hot and 300 cold particles, varying both the dif-
fusivity and the system size (which causes variation in the
average densities c0A = c0B). Cold particles were observed
to aggregate into typically one large cluster when they
were cold enough and the density was high enough. The
steady-state fractional occupation of the largest cluster
was used as a proxy for the condensation order parameter
ϕA − ϕB , and is plotted in their Fig. 2, displaying what
appears to be a 1st-order phase transition with finite-
size effects. We plot a “phase diagram” showing this
order parameter along with the spinodal (eq. 12), above
which condensation is expected. The agreement between
analytic theory and simulations is satisfactory at best.

The critical point is the point (on the spinodal) where
the spinodal is perpendicular to the zero eigenvector of
the Hessian of f , which implies maximum fluctuations.
In Ref. [8] they find this to be the point where

BABc
0
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(1 + c0ABA)2
=

TA

TAB
(13)(
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1

c0A

)(
BB +

1
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=

T 2
ABB

2
AB

TATB
. (14)

See Fig. 3 for Fig. 2a of Ref. [8], which depicts the tri-
angular phase diagram of the hot particle, cold particle,
and solvent mixture.

The free energy is plotted for baseline concentrations
c0A, c

0
B near the critical point in Fig. 4. Upon running

simulations of many hot and cold particles while increas-
ing baseline concentrations through the critical point,
we find steady-state configurations departing from a ho-
mogenous state, through a scale-invariant regime, to a
phase-separated state with clusters of a fixed size (Fig.1).
This provides definitive, albeit qualitative, support for
the analytic predictions of Refs. [7, 8].

B. Fluctuations in the Gaussian model

We would like to predict statistical quantities such as
correlations between Fourier components of the density
fields and possible fluctuation-induced changes to the
phase diagram. We convert the theory to the fluctuat-
ing version by adding a noise term,

√
Tγcγηγ(x, t), that

arises naturally in the coarse-graining of the fluctuating
fields (see Ref. [14]), which we omit for brevity.

We will make the simplifying assumption that the mo-
bility, found to be cA by our explicit coarse-graining, can
be treated as constant cA ≈ c0A. This makes the noise ad-
ditive, rather than multiplicative, which is very helpful.
The equations of motion are then

FIG. 2. Steady-state fractional occupation of the largest clus-
ter in simulations of 300 hot and 300 cold particles from
Ref. [9], varying the diffusivity ratio D and the total packing
fraction ϕ = (c0A + c0β)πa

2. The spinodal (eq. 12) is plotted
in black.
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FIG. 3. Fig. 2a of Ref. [8] depicting the phase diagram of the
two-temperature model

FIG. 4. Mean-field free energy along a slice of ϕA, ϕB phase
space tangent to the spinodal (eq. 12), as the baseline concen-
trations c0A, c

0
B are varied from the disordered phase (yellow)

through the critical point (black dashed line) to the ordered
phase (purple), on a phase space trajectory perpendicular to
the spinodal.

∂ϕA
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= ∇ ·

[
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γ

(
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)
+
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2
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3!
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]
, (15)

where ηA is a standard Gaussian white noise with real-
and Fourier-space correlation

⟨ηiγ(x, t)η
j
δ(x

′, t′)⟩ = δijδγδδ
d(x− x′)δ(t− t′) (16)

⟨η̃iγ(q, ω)η̃
j
δ(q

′, ω′)⟩ = δijδγδδ
d(q + q′)δ(ω + ω′). (17)

The noise term can be written as a conserved noise
field ζA(x, t) ≡ ∇ ·

√
2c0ATAηA(x, t), which has real- and

Fourier-space correlation

⟨ζγ(x, t)ζδ(x′, t′)⟩ = 2Tγc
0
γδγδ∇x∇x′δd(x− x′)δ(t− t′)

⟨ζ̃γ(q, ω)ζ̃δ(q′, ω′)⟩ = 2Tγc
0
γq

2δγδ(2π)
d+1δd(q + q′)δ(ω + ω′).

(18)

The solution can immediately be found, to linear order,
in terms of the noise by inverting the interaction matrix
between fields. First put the dynamics in Fourier space.
We find the equation

iωϕ̃A(q, ω) = c0Aq
2
∑
γ

(tAγ − q2KAγ)ϕ̃γ(q, ω) + ζA(q, ω)

(19)

whose solution can be written as

(
ϕ̃A(q, ω)

ϕ̃B(q, ω)

)
≡ G0(q, ω)

(
ζA(q, ω)
ζB(q, ω)

)
, (20)

where we have defined the 0th-order matrix propagator
G0(q, ω).
One can immediately compute a number of quantities

using the noise correlations (Eq. 18). For instance, the
correlation between two fields’ Fourier components is

⟨ϕ̃γ(q, ω)ϕ̃δ(q
′, ω′)⟩

= (2π)d+1δd(q + q′)δ(ω + ω′)

· 2q2
[
G0(q, ω)[Tρ

0]G0(q, ω)
†]

γδ

≡ (2π)d+1δd(q + q′)δ(ω + ω′)C0(q, ω)γδ

where [Tρ0] is the diagonal matrix with entries TAρ
0
A

and † is the Hermitian conjugate. By explicitly perform-
ing the matrix multiplication, we can then compute the
static structure factors S0(q)γδ =

∫
dω
2πC0(q, ω)γδ

S0(q)AA =
TAρ

0
A

dAA + dBB
+

TAρ
0
Ad

2
BB + TBρ

0
Bd

2
BA

(dAAdBB − dABdBA)(dAA + dBB)

S0(q)BB =
TBρ

0
B
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+
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Ad

2
AB + TBρ

0
Bd

2
AA
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S0(q)AB = − TAρ
0
AdABdBB + TBρ

0
BdBAdAA

(dAAdBB − dABdBA)(dAA + dBB)

= S0(q)BA (21)

where the dAA, etc. are defined as

dAA = c0A(tAA − q2KAA)

dAB = c0A(tAB − q2KAB)

dBA = c0B(tAB − q2KAB)

dBB = c0B(tBB − q2KBB). (22)
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FIG. 5. Static structure factors at densities below (top left),
above (top right), and at (bottom) the critical point. Note the
characteristic power-law S0(q) ∼ q−2 at the critical point, and
the spike at a characteristic wavelength (indicating a charac-
teristic clustering size) above the critical point.

See Fig. 5 for plots of this analytically computed struc-
ture factor near the critical point. With zero coupling
(tAB = KAB = 0), the structure factors are S0(q)Aβ =
δAβTAc

0
A/(tA+ q2KA), as is expected for a vanilla Gaus-

sian model.
This concludes our discussion of the effective equilib-

rium theory of the two-temperature model.

III. DETAILED BALANCE VIOLATION

In this section, we ask: what happened to the viola-
tion of thermal equilibrium in this system? Evidently, it
disappeared at some point during coarse-graining. Re-
covering it will require zooming back in and examining
lost degrees of freedom.

A. Microscopic fluxes

First, return to the microscopics dynamics (Eq. 1b).
In [7], the dynamics for a single pair of hot and cold par-
ticles (NA = NB = 1) with only an interaction potential
uAB(r) was solved exactly. The relative coordinate be-
tween the two particles follows a Boltzmann distribution.
That is,

P (r) =
1

z
exp

(
−uAB(r)

TAB

)
(23)

with effective temperature TAB that is simply the
arithmetic mean of TA and TB (Eq. 3).

FIG. 6. Fluxes in configurational space for two coupled parti-
cles of different temperatures (left) and a single self-propelled
particle (right).

From this, it was proven that there exist currents in
the joint phase space of the hot and cold particles’ loca-
tions. The hot particle tends to “push” the cold particle,
resulting in an average current vector pointing in the di-
rection of x⃗C − x⃗H . One can make an analogy to the mi-
croscopic currents in the configurational space of a single
self-propelled particle, rotated by 45 degrees: the current
vector points in the θ-direction in x-space. See Fig. 6. It
is known that the introduction of an asymmetric poten-
tial causes directed currents in systems of self-propelled
particles [5]. Given this similarity, it is natural to won-
der whether directed currents will occur in a two-particle
system with different temperatures.

We have observed such currents in these two-
temperature systems. An example is shown in Fig. 7.
The particles always tend to cross over the shorter,
steeper side of the potential (this differs from the active
particle ratchet current mechanism [5]).

B. Mesoscopic fluxes

To derive the effective free energy (Eq. 5), 3-body in-
teractions were neglected in Ref. [7]. While such assump-
tion is valid in the dilute limit, it becomes invalid when
inter-particle interactions are mediated by the presence
of another particle, i.e. by depletion forces. In Section VI
of Ref. [8], they compute the effect of 3-body interactions
on the equation of motion in the case of hard sphere in-
teractions. The result is an additional term which can’t
be written as the gradient of a chemical potential, and
therefore can’t be described by an effective equilibrium
theory. The equation of motion is
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FIG. 7. Ratchet current in a system of 1 hot and 1 cold
particle in a periodic, asymmetric external potential. Above:
schematic of the ratchet mechanism in the type of potential
landscape used. The hot particle “pushes” the cold particle
over the hill. Below: net displacements of the particles over
time.

∂cA
∂t

= ∇
[
cA

{
∇µA + (TA − TB)cA∇cB

}]
µA = TA ln cA +

1

2
TABAcA + TABBABcB

+
1

2
TAΛA∇2cA + TABΛAB∇2cB

+
1

2
TAc

3
A +

1

2
TBc

3
B + (TA + 2TB)cAcB (24)

In an equivalent “top-down” model where one would
add the appropriate noise and assume roughly constant
mobility (Eq. 15), the dynamics would then look like

∂ϕA

∂t
= ∇

[
c0A

{
∇
(

δF
δϕA

+ (TA + 2TB)ϕAϕB

)
+ (TA − TB)ϕA∇ϕB +

√
2c0ATAηA

]
(25)

where F is an appropriate Landau-Ginzburg free en-
ergy with coefficients that can be determined by expand-
ing the dynamics in eq. 24 around reference densities
c0A, c

0
B .

In the case that TA ̸= TB , there arises a term in the

current of A and B particles, J⃗A = J⃗B , that cannot be
expressed as the gradient of any potential. This cur-
rent, (TA − TB)ϕA∇ϕB , is a direct consequence of the
asymmetry of interactions between the particles of two
temperatures: if one imagines a positive gradient of cold
particles (∇ϕB), the hot particles will have a current in
that direction, i.e. they will “run up the hill,” chasing
the cold particles away.
Moreover, the curl of such current

∇× J⃗A = (TA − TB)∇ϕA ×∇ϕB (26)

is generically nonzero in greater than 1 dimension.
By following the derivation of the entropy production

in Ref. [12], one can verify that the entropy production,
which comes solely from this new term, is nonzero, but
only when there is a phase interface (just as in MIPS).

IV. CONCLUSION

We have investigated the phase separation in a system
of particles coupled to two different thermal reservoirs.
We have found decent agreement between simulations of
Ref. [9] and this work with the effective equilibrium de-
scription of the system. We have also shown that there
are currents that break detailed balance at the micro-
and meso-scopic levels. In particular, we have observed a
ratchet current in a two-temperature two-particle system
in an asymmetric potential due to the “chasing” dynam-
ics of the particles, and traced these chasing dynamics
to the mesoscopic level where they add terms (derived
in Ref. [8]) to the current that can’t be described by an
effective free energy.
However, the question remains whether or not this

mesoscopic detailed balance violation will have any
macroscopic consequences on the phase. One could pro-
ceed with a renormalization group analysis to check its
relevance. Dimensional analysis indeed suggests that in
the long-wavelength limit, these terms are relevant com-
pared to the linear model, at least below the upper crit-
ical dimension dc = 4. If we apply the scaling x 7→ bx,
ϕ 7→ bαϕ, and t 7→ bzt, the dynamics (Eq. 25) become

∂ϕA

∂t
= ∇

[
c0A

{
∇
∑
γ

(
bz−2tAγϕAγ + bz−4KAγ∇2ϕγ

)
+ bz+α−2(TA − TB)ϕA∇ϕB

}
+ b−d/2+z/2−α−1

√
2c0ATAηA

]
. (27)

Selecting exponents that fix the fluctuations KAγ and
noise TA (z = 4, α = (2− d)/2), we find

(TA − TB)ϕA∇ϕB 7→ b(4−d)/2(TA − TB)ϕA∇ϕB , (28)
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signifying a relevant coupling.
Moreover, we haven’t yet confirmed what will happen

to the phase separation of many particles in the pres-
ence of an asymmetric potential (like in Fig. 7). Random
potentials have been shown to destroy phase separation
in active particle suspensions via the creation of ratchet
currents [15]. Because a pair of hot and cold particles ex-
hibit a ratchet current in an asymmetric potential, it is

natural to ask whether such ratchet currents will emerge
and have a macroscopic effect on the phase separation.
In future work, we hope to address these questions,

in addition to generalizing our theory to systems with
many different temperatures. This will help us better un-
derstand the effects of inhomogenous activity in biologi-
cal systems such as active polymers, where temperature-
based phase separation is already known to occur [16].
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