Saddle point integration:

Similarly, an integral of the form

7= /dxexp (No(z)) (4.4.11)

can be approximated by the maximum value of the integrand, obtained at a point x,,,, which
maximizes the exponent ¢(z). Expanding the exponent around this point gives

T= / dx exp {N {qﬁ(mmax) - %W’(:cmax)\(:c — Tmax)® - } } : (4.4.12)

Note that at the maximum, the first derivative ¢'(zpnax), is zero, while the second derivative
" (Tmax), i negative. Terminating the series at the quadratic order results in

N 27
T =~ N¢(1’ma>c)/d I PR max — Tmax 2 ~ 27 oNo(@max) 4.4.13
: rexp [~ 316/ (a0 = ] = o[ e (1419

where the range of integration has been extended to [—o0,00]. The latter is justified since
the integrand is negligibly small outside the neighborhood of ..

Figure 4.7: Saddle point evaluation of an ‘exponential’ integral.

There are two types of corrections to the above result. Firstly, there are higher order terms
in the expansion of ¢(x) around .. These corrections can be looked at perturbatively,
and lead to a series in powers of 1/N. Secondly, there may be additional local maxima for
the function. A maximum at z] ., leads to a similar Gaussian integral that can be added

to Eq. (4.4.13). Clearly such contributions are smaller by O( exp{—N|[¢(Zmax) — A(Zha)]})-
Since all these corrections vanish in the thermodynamic limit,

lim % = lim | ¢(Zmax) — L (M) +0 (L)] = ¢(Tmax) - (4.4.14)
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