
8.334: Statistical Mechanics II Problem Set # 5 Due: 4/26/24

Duality: Potts models & Percolation

1. Clock model duality: Consider spins si = (1, 2, · · · , q) placed on the sites of a square

lattice, interacting via the clock model Hamiltonian

βHC = −
∑

<i,j>

J ((si − sj)modq) ,

(a) Change from the N site variables to the 2N bond variables bij = si − sj. Show

that the difference in the number of variables can be accounted for by the constraint that

around each plaquette (elementary square) the sum of the four bond variables must be

zero modulus q.

(b) The constraints can be implemented by adding “delta–functions”

δ [Sp]modq =
1

q

q
∑

np=1

exp

[

2πinpSp

q

]

,

for each plaquette. Show that after summing over the bond variables, the partition function

can be written in terms of the dual variables, as

Z = q−N
∑

{np}

∏

〈p,p′〉

λ (np − np′) ≡
∑

{np}

exp





∑

〈p,p′〉

J̃ (np − np′)



 ,

where λ(k) is the discrete Fourier transform of eJ(n).

(c) Calculate the dual interaction parameter of a Potts model, and hence locate the critical

point Jc(q).

(d) Construct the dual of the anisotropic Potts model, with

−βH =
∑

x,y

(

Jxδsx,y,sx+1,y
+ Jyδsx,y,sx,y+1

)

;

i.e. with bonds of different strengths along the x and y directions. Find the line of self–dual

interactions in the plane (Jx, Jy).

********



2. Triangular/hexagonal lattice Ising model: For any planar network of bonds, one can

define a geometrical dual by connecting the centers of neighboring plaquettes. Each bond

of the dual lattice crosses a bond of the original lattice, allowing for a local mapping. The

dual of a triangular lattice is a hexagonal (or honeycomb) lattice, and vice versa.

(a) Consider the Ising models on a hexagonal lattice with nearest neighbor interaction

strength Kh. Note that the hexagonal lattice is bipartite, i.e. can be separated into two

sublattices. In the partition function, do a partial sum over all spins in one sublattice.

Show that the remaining spins form a triangular lattice with nearest neighbor interaction

Kt(Kh). (This is called the star–triangle transformation.)

(b) Show that the dual of a triangular Ising model is a hexagonal Ising model with the

usual duality relation K̃(K).

(c) By combining the previous results, obtain the critical couplingsK∗
t andK∗

h of triangular

and hexagonal lattices.

********

3. (Optional) Triangular/hexagonal lattice Potts model: The steps of the previous

problem can be repeated for a general Potts model.

(a) Consider Potts spins (si = 1, 2, · · · , q) on a hexagonal lattice with nearest neighbor

interaction Khδsi,sj . Perform the star-triangle decimation to show that the remaining

spins form a triangular lattice with nearest neighbor interaction Kt(Kh), and a three spin

interaction L(Kh). Why is L absent in the Ising model?

(b) What is the dual of the Potts model on the triangular lattice?

(c) Clearly, the model is not self–dual due to the additional interaction. Nonetheless,

obtain the critical value such that K̃t(Kc) = Kc. Then check that L(Kc) = 0, i.e. while

the model in general is not self–dual, it is self–dual right at criticality, leading to the exact

value of Kc(q)!

********

4. (Optional) Cubic lattice: The geometric concept of duality can be extended to

general dimensions d. However, the dual of a geometric element of dimension D is an

entity of dimension d−D. For example, the dual of a bond (D = 1) in d = 3 is a plaquette

(D = 2), as demonstrated in this problem.



(a) Consider a clock model on a cubic lattice of N points. Change to the 3N bond variables

bij = si − sj . (Note that one must make a convention about the positive directions on the

three axes.) Show that there are now 2N constraints associated with the plaquettes of this

lattice.

(b) Implement the constraints through discrete delta-functions by associating an auxiliary

variable np with each plaquette. It is useful to imagine np as defined on a bond of the dual

lattice, perpendicular to the plaquette p.

(c) By summing over the bond variables in Z, obtain the dual Hamiltonian

˜βH =
∑

p

J̃ (np
12 − n

p
23 + n

p
34 − n

p
41) ,

where the sum is over all plaquettes p of the dual lattice, with
{

n
p
ij

}

indicating the four

bonds around plaquette p.

(d) Note that ˜βH is left invariant if all the six bonds going out of any site are simultaneously

increased by the same integer. Thus unlike the original model which only had a global

translation symmetry, the dual model has a local, i.e. gauge symmetry.

(e) Consider a Potts gauge theory defined on the plaquettes of a four dimensional hyper-

cubic lattice. Find its critical coupling Jc(q).

********

Percolation

Fluids do not pass through a solid with a small concentration of holes. However,

beyond a threshold concentration, the holes overlap, and the fluid can percolate through

a connected channel in the material. Percolation is a classical geometric phase transition,

and has been used as a model of many breakdown or failure processes. The loss of rigidity

in an elastic network, conductivity in resistor nets, magnetization in diluted magnets are

but a few examples.

In simple models of percolation, elements of a lattice (sites or bonds) are independently

occupied with a probability p. A cluster is defined as a connected (by neighboring bonds)

set of these occupied elements. At small p, only small clusters exist, and the probability

that two sites, separated by a distance r, are connected to each other Up ≡ n
p
12 − n

p
23 +

n
p
34 − n

p
41p, diverging at the percolation threshold pc as ξ(p) ∼ |pc − p|−ν . An infinite

cluster first appears at this threshold, and percolates through the (infinite) system for all

p > pc. The analog of the order parameter is the probability P (p) that a site belongs to



this infinite cluster. On approaching pc from above, it vanishes as P (p) ∼ |pc− p|β . While

the value of pc depends on the details of the model, the exponents β and ν are universal,

varying only with the spatial dimension d.

In the following problems we shall focus on bond percolation, i.e. p denotes the

probability that a bond on the lattice is occupied. There is a mapping between percolation,

and the q → 1 limit of Potts models that is described in the review problems.

5. Duality has a very natural interpretation in percolation: If a bond is occupied, its dual

is empty, and vice versa. Thus the occupation probability for dual bonds is p̃ = 1− p ≡ q.

Since, by construction, the original and dual elements do not intersect, one or the other

percolates through the system.

(a) The dual of a chain in which N bonds are connected in series, has N bonds connected

in parallel. What is the corresponding (non-) percolation probability?

(b) The bond percolation problem on a square lattice is self-dual. What is its threshold

pc?

(c) (Optional) Bond percolation in three dimensions is dual to plaquette percolation. Is

it possible to have a percolating cluster that does not have solid integrity in d = 3?

********

6. Cayley trees: Consider a hierarchical lattice in which each site at one level is connected

to z sites at the level below. Thus the n-th level of the tree has zn sites.

(a) For z = 2, obtain a recursion relation for the probability Pn(p) that the top site of a

tree of n levels is connected to some site at the bottom level.

(b) Find the self-consistency condition governing the probability P ∗(p) that for infinitely

many levels, the top layer is connected to some site at the bottom of the tree.

(c) Find the critical probability pc, and the exponent β for the vanishing of P ∗(p) on

approaching pc.

(d) The one-dimensional chain corresponds to z = 1. Find the probability that end-points

of an open chain of N +1 sites are connected, and hence deduce the correlation length ξ.

********


