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Forces

Van der Waals
“London forces" (after Fritz London)
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Forces

Van der Waals : Lennard-Jones approximation
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Van der Waals interactions

Interaction E, kcal/mol r,,A  1,,,,A Atomic radii (A)
H....H 0.12 2.4 2.0 H: 1.0
H. C 0.11 2.9 24
C. C 0.12 3.4 3.0 C: 1.5
O. O 0.23 3.0 2.7 O: 1.35
N....N 0.20 3.1 2.7 N: 1.35

CH;...CHp ~ 0.5 ~40 ~30 CHy: 1.5
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Kellar Autumn, Metin Sitti, Yiching A. Liang, Anne M. Peattie, Wendy R. Hansen, Simon Sponberg,
Thomas W. Kenny, Ronald Fearing, Jacob N. Israelachvili, and Robert J. Full
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Proceedings of the National Academy of Sciences of the United States of America WWW.pnas.org

Evidence for van der Waals adhesion in gecko setae

PNAS published online Aug 27, 2002;
doi:10.1073/pnas.192252799
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Fig. 1. Force of gecko setae on highly polarizable surfaces versus for surface hydrophobicity. (A) Wet adhesion prediction. (B) van der Waals prediction.
(C) Results from toe on highly polarizable semiconductor wafer surfaces differing in hydrophobicity. (D) Results from single seta attaching to highly polarizable
MEMS cantilevers differing in hydrophobicity. Note that geckos fail to adhere to hydrophobic, weakly polarizable surfaces [polytetrafluoroethylene where § =
105° (25) and the dielectric constant, £ = 2.0 (23)]. Adhesion to hydrophilic and hydrophobic polarizable surfaceswas similar. Therefore, we reject the hypothesis
that wet, capillary interactions are necessary for gecko adhesion in favor of the van der Waals hypothesis.

and 23) to predict R for the spatulae. We measured =40 uN
adhesion per seta on MEMS surfaces. There are =3,600 tetrads
of setae per mm? (39), or 14,400 setae per mm? Therefore,
adhesive stress from our force measurements is =576,000 N/m?
(5.68 atmospheres; 1 atm = 101.3 kPa). The Johnson-Kendall-
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C] [ Q~ gecko robot

Home Page

HOME RESEARCH PUBLICATION PEOPLE MEDIA CONTACT

Video links

Stickybot

| Hyper dynamic robotics m

- The world's first glass wall climbing legged robot and first directional dry adhesive
tape inspired from the gecko lizard

The winner of the Best Paper Award for the IEEE Transactions on
Robotics, for the year 2008

Best Student Paper Award and Best Conference paper finalist at IEEE
International Conference on Robotics & Automation 2007

Selected among TIME magazine's Best Inventions of 2006
Featured on The Discovery channel: Weird Science
Featured on History channel: Modern Marvels- “Sticky Stuff”
Featured on PBS Wired science: Geek Beat

Featured on ABC “Good morning America”

Featured in National Geographic- “Design by Nature”

Featured in Forbes magazine- “7 Amazing robots that will change your
life"

http://web.mit.edu/sangbae/www/media.html



Woater and hydrogen bonds




Woater and hydrogen bonds
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Typical hydrogen bond within a protein.



SOLVENT: Hydrogen bonds
1. WATER ALLOWS HYDROGEN BONDS TO BREAK
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bond in helix is breaking
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2. Hydrogen bonds in proteins are ENTROPIC




SOLVENT: Hydrogen bonds
2. Hydrogen bonds in proteins are ENTROPIC
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Hydrophobic effect

Frank & Evans 1945
» Water molecules form hydrogen bonds

* Polar groups do not disturb the network
of water-water interactions.

* Non-polar (hydrophobic) groups disrupt
the network leading to formation
of “local ordering” of water.

 Local ordering reduces the entropy

DG=0.2 kcal/mol due to ordering of the interface water
compare to DG of breaking 1 H-bond = 5 kcal/mol

From: Laidig, K. E.; Daggett, V. J. Phys. Chem., 1996, 100, 5616.



Hydrophobic effect

(Walter Kauzmann 1959)
Entropic (<Inm) and
entalpic (>1nm)

Number AAG (kcal/mol)* AG,H

Substitution of examples Low  High Average (kcal/mol)
lle - Val 9 0.5 1.8 1.3 £ 04 0.80
Ile > Ala 9 I.1 5.1 3.8 £ 0.7 2.04
Len — Ala 17 1.7 6.2 3.5 1.1 1.90
Val —» Ala 11 0.0 = 47 2.5 0.9 - 1.24
-CH,-* 46 0.0 2.3 1.2 04 0.68
Met — Ala 4 2.1 4.6 3.0 % 0.9 1.26
Phe — Ala 4 3.5 4.4 3.8 £ 0.3 2.02

~10 cal/mol/AZ?



FIG. 1. a. Schematic view of local water structure
near a small hydrophobic sphere. Dashed lines indicate
hydrogen bonds. b. Schematic view of water structure
near large parallel hydrophobic plates. Shaded area indi-
cates regions where water density is essentially that of the
bulk liquid; vacant regions indicate where water density
is essentially that of the bulk vapor.
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FIGURE 7.16

The denaturants urea and guanidinium chloride (GdmCl) increase the solubilities of both
polar and nonpolar amino acid side chains, as measured by the free energy of transfer from
water to either denaturant solution (Y. Nozaki and C. Tanford, J. Biol. Chem. 238:4074—
4081, 1963; 245:1648 - 1652, 1970). There is a linear correlation of this effect with their ac-
cessible surface areas (Table 4.4), although the curves do not extrapolate through the origin.
The solid lines have slopes of 7.1 and 8.3 cal/(mol - A?) for 8 M urea and 6 M GdmCl, re-
Spectively. Residues indicated by open circles have polar groups on side chains. (From T. E.
Creighton, J. Mol. Biol. 129:235-264, 1979.)




ELECTRO + SOLVENT :
Dielectric effect
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In proteins only: Disulfide bonds
(S-S bonds)

CYS side chain : -CH,-SH



SUMMARY: Biomolecular forces

Rotation f, quantum | Kcal/mol
H-bonds entropic 0.5 Kcal/mol
VdWaals quantum 0.2 Kcal/mol
Hydrophobic  entropic 1.5 Kcal/mol
~10 cal/mol/A?
Electrostatic  entropic! 2-3 Kcal/mol
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Outline

Protein structure



Nature Reviews | Molecular Cell Biology

The low-resolution structure of myoglobin that was published by John
Kendrew and colleagues in 1958
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Secondary Structure:
b-sheets

fa} Antiparallel

(b} Parallel

Figure 6-8. Kay to Structure. 3 Sheets.
[Figure copyrighted & by Irving Geis.)

Copynght 1889 John Wiley and Sons, Inc, Al rights resared



Secondary Structure:




Secondary Structure:
a-helices
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Figure 6-7. Key to Structure. The o halix.
[Figure copyrighted by @ Irving Gels.]

Copynght 1888 John Wilsy and Sens, Ine, All ights reserved



Secondary Structure:
a-helices




Domain Structure
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MANY PROTEINS ARE DIMERS OR
OLIGOMERS WHICH CONSIST OF
SEVERAL POLYPEPTIDE CHAINS.

MANY PROTEINS CONSIST OF
SEVERAL DOMAINS
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An Atomic Model of the
Interferon-3 Enhanceosome

Daniel Panne,’ Tom Maniatis,” and Stephen C. Harrison'*



Sequence-Structure Mapping

- Similar sequences always have similar structures.
- Different sequences have different

structures, but
- Different sequences may have similar structures.

Sequence Space Structure Space
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Protein Folding Problem

HOW DOES A PROTEIN FOLD?

Levinthal Paradox:
A protein of 100 amino acids has ~ 4'%° ~ |052 possible conformations. Folding by

trying each conformation in
10-'2 sec will take 10** years!

BUT it takes a protein only 10°'..10% seconds to fold...

PREDICT PROTEIN STRUCTURE FROM
IT SEQUENCE.

Is information contained in protein sequence
sufficient to determine protein structure?
Anfinsen Experiment




Protein Folding

Levinthal Paradox

A protein of 100 amino acids has ~ 4'%° ~ |0%2 possible
conformations. If it takes 10-'? sec to try each conformation, then
it takes 10% years to find the native one!

BUT proteins fold in 10°'..10- sec.



Anfinsen Experiment

The Observation:
— —
1. Reduce 1. Remove urea
2.8 Murea sH 2. Oxidze
Native' Denatured Native
{100% active) {inactive) {(=80% active)
The Control:

—_—

1. Oxidze
2. Remove urea

MNative Denatured "Scrambled"
(1-2% active)

Information contained in the protein sequence is
sufficient to determine protein structure!

THERMODYNAMIC HYPOTHESIS:
The native structure is the GLOBAL minimum of free

nergy.
energy Anfinsen, C.B. (1973) "Principles that govern the
folding of protein chains." Science 181 223-230.



