
2.4 DNA structure

DNA molecules come in a wide range of length scales, from roughly 50,000 monomers in a
λ-phage, 6× 109 for human, to 9× 1010 nucleotides in the lily. The latter would be around
thirty meters long if fully stretched. If we consider DNA as a random (non-self avoiding)
chain of persistence length ξp ≈ 50 nm, its typical size would be Rg ≈

√

L ·Rp, coming to
approximately 0.2 mm in human. Excluded volume effects would further increase the extent
of the polymer. This is much larger than the size of a typical cell, and thus DNA within
cells has to be highly compactified. Eukaryotes organize DNA by wrapping the chain around
histone proteins (nucleosomes), which are then packed together.

At the microscopic a double helix is formed by formation of Watson–Crick pairs, G–C and
A–T. There are 3 hydrogen bonds in a GC pairing and two per an AT pair. While GC rich
portions of DNA are more strongly bond, it is not because of the above difference in number
of hydrogen bonds, but due to increase in stacking energies (with a binding energy of around
4kBT for AT stacks, roughly twice that for GC stacking). At finite temperatures, this energy
gain competes with the loss of entropy that comes with the braiding of the two strands.
Indeed at temperatures of around 80◦C the double strand starts to unravel, denaturing
(melting) into ‘bubbles’ where the two strands are apart. Regions of DNA that are rich in
A–T open up at lower temperatures, those with high G–C content at higher temperatures.
Such unbinding events are observed as separate blips in ultraviolet absorption as a function
of temperature for short DNA molecules, but overlap and appear as a continuous curve in
very long DNA.

There are software packages that predict the way in which a specific DNA sequence
unravels as a function of temperature. The underlying approach is the calculation of free
energies for a given sequence based on some model of the binding energies, e.g. by adding
energy gains from stacking successive Watson-Crick pairs. Another component is the gain in
entropy upon forming a bubble, which is observed experimentally to depend on the length l
of the denatured fragment as

S(l) ≈ bl + c log l + d , with c ≈ 1.8kB . (2.72)

The leading linear term in l is a measure of the gain in entropy per base pair, while the
subleading logarithmic dependence is a consequence of loop closure, and can be justified as
follows: A bubble is composed of two single stranded segments of length l, with start and end
positions on the double strand. First we sum over all configurations of these two segments,
assuming that the two end points are separated by a distance ~r. Regarding each segment
as a non-interacting random walk of length l and end-to-end separation ~r, the number of
configurations is easily obtained by appropriate extension of Eq. (2.40) to

Wloop(~r, 2l) = W (~r, l)2 = g2l1 exp

[

− dr2

2lξp

]

1

(4πlξp/d)d
, (2.73)

where we have further generalized to the case of random walks in d space dimensions. The
total number of configurations of a bubble is now obtained by integrating over all positions
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of the intermediate point as

Ω(l) =

∫

ddrWloop(~r, 2l) =

(

d

8πξp

)d/2
gl

lc
, (2.74)

with g = g21 and c = d/2.
For the more realistic case of self-avoiding polymers, a naive scaling argument (ignoring

interactions between segments) suggests

Wloop(~r, 2l) =
gl

Rd
Φ

(

~r

R

)

, with R ∼ lν , and Ω(l) ∝ gl

ldν
. (2.75)

We can justify this dependence by noting that in the absence of the loop closure constraint the
end-point is likely to be anywhere in a volume of size roughly Rd ∝ ldν , and that brining the
ends together reduces the number of choices by this volume factor. As we shall see shortly,
the parameter g is important in determining the value of the denaturation temperature,
while c controls the nature (sharpness) of the transition.

2.4.1 The Poland–Scheraga model for DNA Denaturation

Strictly speaking, the denaturation of DNA can be regarded as a phase transition only in
the limit where the number of monomers N is infinite. In practice, the crossover form fully
bound to unbound occurs over a temperature interval that becomes narrower for large N , so
that it is sharp enough to be indistinguishable from a real singularity, say for N ∼ 106. We
shall describe here a simplified model for DNA denaturation due to Poland and Scheraga6.
Configurations of partially melted DNA are represented in this model as an alternating
sequence of double-stranded segments (rods), and single-stranded loops (bubbles).

Figure 15: Partially denatured DNA as a sequence of bubbles and rods.

Ignoring any interactions between the segments, each configuration is assigned a proba-
bility

p (l1, l2, l3, · · · ) =
R(l1)B(l2)R(l3) · · ·

Z
, (2.76)

6D. Poland and H. A. Scheraga, “Phase transitions in one dimension and the helix-coil transition in
polyamino acids,” J. Chem. Phys. 45, 1456 (1966).
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where we have assumed that the first segment is a rod of length l1, the second a bubble
formed from two single strands of length l2, and so on. The double stranded segments are
energetically favored, but carry little entropy. To make analytical computations feasible, we
shall ignore the variations in binding energy for different nucleotides, and assign an average
energy ǫ < 0 per double-stranded bond. (In this sense, this is a model for denaturation of a
DNA homo-polymer.) The weight of a rod segment of length l is thus

R(l) = e−βǫl ≡ wl, where w = e−βǫ > 1 . (2.77)

The single-stranded portions are flexible, and provide an entropic advantage that is modeled
according to a weight similar to Eqs. (2.74-2.75), as

B(l) = a
gl

lc
, (2.78)

where the parameter a incorporates the normalization of loop probability, as in Eq. (2.74),
and more importantly energetic costs associated with opening up a bubble in the first place.
Clearly the above weight cannot be valid for strands shorter than a persistence length, but
better describes longer bubbles. As we shall see, a is irrelevant to the sharpness of the
denaturation transition, although it does determine its temperature.

For DNA of length L the individual segment lengths are constrained such that

l1 + l2 + l3 + · · · = L , (2.79)

and the partition function, normalizing the weights in Eq. (2.76), is given by

Z(L) =

′

∑

l1,l2,l3,...

wl1Ω(l2)w
l3Ω(l4) · · · , (2.80)

where the prime indicates the constraint in Eq. (2.79). The passage from canonical to grand
canonical ensemble exemplifies a typical transformation from statistical physics in which a
global constraint (the number of particles) is removed by introducing a conjugate variable
(chemical potential). It is similarly convenient here to consider an ensemble of DNA of
variable length L, obtained by assigning weights zL to segments of length L. (The quantity
z, sometimes called a “fugacity” is related to a chemical potential µ for basepairs by z = eβµ.)
In such an ensemble, the appropriate (grand) partition function is

Z(z) =

∞
∑

L=1

zLZ(L) . (2.81)

Since L can now take any value, we can sum over the {li} independently without any
constraint, to obtain

Z(z) =

(

∑

l1

zl1wl1

)(

∑

l2

zl2Ω(l2)

)(

∑

l3

zl3wl3

)(

∑

l4

zl4Ω(l4)

)

· · · . (2.82)
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The result is thus a product of alternating contributions from rods and bubbles. For each
rod segment, we get a factor of

R(z) =
∞
∑

l=1

(zw)l =
zw

1− zw
, (2.83)

while the contribution from a bubble is

B(z) = a
∞
∑

l=1

zlΩ(l) = a
∞
∑

l=1

zlgl

lc
≡ af+

c (zg) . (2.84)

The result for bubbles has been expressed in terms of the special functions f+
n (x), frequently

encountered in describing the ideal Bose gas in the grand canonical ensemble. We recall
some properties of these functions. First, note that taking the logarithmic derivative lowers
the index by one, as

z
df+

c (zg)

dz
=

∞
∑

l=1

(zg)l

lc−1
= f+

c−1(zg) . (2.85)

Second, each f+
n (x) is an increasing function of its argument, and convergent up to x = 1,

at which point
f+
c (1) ≡ ζc , (2.86)

where ζc is the well-known Riemann zeta-function. The zeta-function is well behaved only
for c > 1, and indeed for c < 1, f+

c (x) diverges is (1− x)c−1 for x → 1.7

Next, we must sum over all possible numbers of bubbles in between two rod segments as
end points, leading to

Z(z) = R(z) +R(z)B(z)R(z) +R(z)B(z)R(z)B(z)R(z) + · · · . (2.87)

This is a just geometric series, easily summed to

Z(z) =
R(z)

1−R(z)B(z)
=

1

R−1(z)− B(z)
=

1

(zw)−1 − 1− af+
c (zg)

. (2.88)

The logarithm of the sum provides a useful thermodynamic free energy,

logZ(z) = − ln

[

1

zw
− 1− af+

c (zg)

]

, (2.89)

from which we can extract physical observables. For example, while the length L is a
random variable in this ensemble, for a given z, its distribution is narrowly peaked around
the expectation value

〈L〉 = z
∂

∂z
lnZ(z) =

1
zw

+ agf+
c−1(zg)

1
zw

− 1− af+
c (zg)

. (2.90)

7Furthering the mathematical analogy between DNA melting and Bose-Einstein condensation, note that
when the bubble is treated as a random walk, c = d/2, implying that B(z) is only finite for d ≤ 2. Indeed,
d = 2 is also the lower critical dimension for occurrence of Bose-Einstein condensation.

29



We can also compute the fraction of the polymer that is in the denatured state. Since
each double-strand bond contributes a factor w to the weight, the number of bound pairs
NB has a mean value

〈NB〉 = w
∂

∂w
lnZ(z) =

1
zw

1
zw

− 1− af+
c (zg)

. (2.91)

Taking the ratio of NB and L gives the fraction of the polymer in the native state as

Θ =
〈NB〉
〈L〉 =

1

1 + zwag f+
c−1(zg)

. (2.92)

Equation (2.92) is not particularly illuminating in its current form, because it gives Θ in
terms of z, which we introduced as a mathematical device for removing the constraint of
fixed length in the partition function. For meaningful physical results we need to solve for
z as a function of L by inverting Eq. (2.91). This task is simplified in the thermodynamic
limit where L,NB → ∞, while their ratio is finite. From Eqs. (2.91-2.92), we see that this
limit is obtained by setting the denominator in these expressions equal to zero, i.e. from the
condition

af+
c (zg) =

1

zw
− 1 . (2.93)

The type of phase behavior resulting from Eqs. (2.93-2.92), and the very existence of
a transition, depends crucially on the parameter c, and we can distinguish between the
following three cases:
(a) For c < 1, the function f+

c (zg) goes to infinity at z = 1/g. The right hand side of
Eq. (2.93) is a decreasing function of z that goes to zero at z = 1/w. We can graphically
solve this equation by looking for the intersection of the curves representing these functions.
As temperature goes up, 1/w = eβǫ increases towards unity, and the intersection point
moves to the right. However, there is no singularity and a finite solution z < 1/g exists
at all temperatures. This solution can then be substituted into Eq. (2.92) resulting in a
native fraction that decreases with temperature, but never goes to zero. There is thus no
denaturation transition in this case.
(b) For 1 ≤ c ≤ 2, the function f+

c (zg) reaches a finite value of ζc at zg = 1. The two curves
intersect at this point for zc = 1/g and wc = g/(1+aζc). For all values of w ≤ wc, z remains
fixed at 1/g. The derivative of f+

c (zg), proportional to f+
c−1(zg) from Eq. (2.85), diverges as

its argument approaches unity, such that

f+
c (zg)− ζc ∝ (1− zg)c−1 . (2.94)

From the occurrence of f+
c−1(zg) in the denominator of Eq. (2.92), we observe that Θ is zero

for w ≤ wc, i.e. the polymer is fully denatured. On approaching the transition point from
the other side, Θ goes to zero continuously. Indeed, Eq. (2.94) implies that a small change

δw ≡ w−wc is accompanied by a much smaller change in z, such that δz ≡ (zc−z) ∝ (δw)
1

c−1 .
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Figure 16: Graphical solution for c ≤ 1.

Since f+
c−1(zg) ∝ (1 − zg)c−2, we conclude from Eq. (2.92) that the native fraction goes to

zero as

Θ ∝ (δz)2−c ∝ (w − wc)
β , with β =

2− c

c− 1
. (2.95)

For a loop treated as a random walk in three dimensions, c = 3/2 and β = 1, i.e. the

Figure 17: Graphical solution for 1 < c < 2.

denatured fraction disappears linearly. Including self-avoidance with c = 3ν ≈ 1.8 leads to
β ≈ 1/4 and a much sharper transition.
(c) For c > 2, the function f+

c−1(zg) approaches a finite limit of ζc−1 at the transition point.
The transition is now discontinuous, with Θ jumping to zero from a finite value of Θc =
(1+aζc)/(1+aζc+agζc−1). Including the effects of self-avoidance within a single loop increases
the value of c from 1.5 to 1.8. In reality there are additional effects of excluded volume
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Figure 18: Graphical solution for c ≥ 2.

between the different segments. It has been argued that including interactions between the
different segments (single and double-strands) further increases the value of c to larger than
2, favoring a discontinuous melting transition.8

A justification of the role of the exponent c in controlling the nature/existence of the
phase transition can be gleaned by considering the behavior of a single bubble. Examining
the competition between entropy and energy suggests that the probability (weight) of a loop
of length ℓ = 2l is proportional to

p(ℓ) ∝
( g

w

)ℓ

× 1

ℓc
. (2.96)

The probability broadens to include larger values of ℓ as (g/w) → 1.
(a) For c < 1, the above probability cannot be normalized if arbitrarily large values of ℓ are
included. Thus at any ratio of (g/w), the probability has to be cut-off at some maximum ℓ,
and the typical size of a loop remains finite.
(b) For 1 ≤ c ≤ 2 the probability can indeed be normalized including all values of ℓ (the
normalization is f+

c (g/w)), but the average size of the loop (related to f+
c−1(g/w)) diverges

as (g/w) → 1 signaling a continuous phase transition.
(c) For c > 2, the probability is normalizable, and the loop size remains finite as (g/w) → 1.
There is a limiting loop size at the transition point suggesting a discontinuous jump.

Note that the the loop initiation factor a does not affect the argument.

8Y. Kafri, D. Mukamel, and L. Peliti, Phys. Rev. Lett. 85, 4988 (2000).
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