What Does Hemoglobin Do?
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Oxygen binding
- Hb curve is sigmoidal - cooperative
- releases significant O, under small changes in oxygen pressure

Related to function
- Hb is for transport from lungs to tissue
- Mbin tissue accepts O, from Hb, for storage (especially in aquatic mammals)
and transport within the tissue




Mb and Hb

Mb+0, ——= MbO, K= —L%bg[ooz]]
Fractional saturation of O, Yo, = [Mb[]'\:‘-b[(l\);tl)o N = KEO{’(I)Z]

Use pO, instead of [O,] because itis agas
pGas = pressure of gas if it occupied total volume by itself

=p0, when Yo, = 0.5, then K = - PO,
Pso = PO, W 02 Pso Yo, b * PO,

In airof 1 atm s 760 torr, pO, = 155 torr
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Oxygen-Binding by Hb and Mb
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Cooperative Binding Sites

«Assume: full cooperativity - n cooperative binding sites either all filled or all empty

—_— = [PIL]
P P
+nL —— L, Ky = L]
= ligandbound _ _n[PL)] __T [L

totalprotein [P]+ [PL]  Kg+ (L]
Ll]n
note: Book uses (moles ligand bound)/ (moles sites) =r/n =Y = ﬁ

n indicates cooperativity, “Hill coefficient”
L L
Y - LI n =1 no cooperativity
n <1 negative cooperativity
n>1 positive cooperativity

«Full cooperativity is ideal, normally n < number of binding sites

Hill Plot
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log—5—5 = nlog [L]- log K, log % n = slope

log [L]

Hb Conformational Changes

equilibrium T —/—™ R

T state - stabilized by salt bridges \
R state - stabilized by oxygen binding
deoxy oxy

What happens when O, binds?

Domino effect of oxygen binding:
. O, binds to heme iron
. Feis pulled into plane of heme
. Proximal His (F8) is pulled closer to heme and reorients
. Helix F shifts along with proximal His
. Loss of salt bridges that stabilize T state
. Contacts between o, click into new orientation
- changes in H-bonding (switch region)
. Causes similar changes at a,f}, interface
. Can't have partial changes, whole molecule snaps into R
. Deoxy-hemes in R state have much higher affinity for O, - pre-organized for O,
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T State

Symmetry Model

Sequential model
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Induced Conformational Change
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R to T State
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*As more oxygen binds, the R state is *Binding curve is a combination
stabilized more than the T state of the two individual states
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The Bohr Effect
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*Bohr Effect - OxyHb is slightly more acidic (decrease in pKa’s) e
- due to loss of salt bridges in R conformation
- higher pH promotes O, binding

*CO, is formed by respiration in tissues, diffuses to capillaries

In capillaries: CO,+H,0 == H*+HCO;,
carbonic bound by Hb,
anhydrase (CA) promotes T state
release of O,
stimulates CA

would form bubbles

Inlungs: O, is high, Hb releases H* and CO, is formed

In highly active muscle: acid is produced, even more is O, released




Heme
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O// bent geometry

Hemein Mb and Hb
- usually Fe(ll)
- Fe(lll) called metHb
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C proximal” ligand
Protoporphyrin IX with iron NI
Non-covalently bound to protein H |

Structures of Mb vs Hb

First crystal structures of proteins
1959  Mb - John Kendrew
1968  Hb - Max Perutz

Mb - muscle protein
- monomer, globular, ellipsoidal molecule 44 x 44 x 25 A
- 8 helices, A-H
- heme is in a hydrophobic pocket
- 5th ligand (proximal) of heme-Fe is His F8
- in deoxy-Mb, no 6th ligand, Fe is 0.55A out of plane towards proximal his
- protein prevents dimerization and auto-oxidation
- heme can also bind CO, NO, H,S

Hb - globular, 64 x 55 x 50 A
- a,f3, dimer of ab protomers, 2-fold axis of symmetry
- a and P subunits have very similar 3° structure to Mb and to each other
- 4 corners of Td, hole in the middle
- so interactions are o,f,, a,f,, a,f,, ap,
- largely hydrophobic, a few H-bonds and ion pairs




Sperm Whale Myoglobin

153 residues

Fig. 1. Schematic structure of hemoglobin. Adapted from Dick-
erson and Geis [48].




Heme Complex

' distal His
His E7 replacement
lowers affinity
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What happens when O, binds?

Domino effect of oxygen binding:
. O, binds to heme iron
. Feis pulled into plane of heme
. Proximal His (F8) is pulled closer to heme and reorients
. Helix F shifts along with proximal His
. Loss of salt bridges that stabilize T state
. Contacts between o, click into new orientation
- changes in H-bonding (switch region)
. Causes similar changes at a,f}, interface
. Can't have partial changes, whole molecule snaps into R
. Deoxy-hemes in R state have much higher affinity for O, - pre-organized for O,
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Effects of Oxygen Binding

Helix F ¥ ——

Changes at o4, Interface

Asn G4 (102)
L AspGL(94)

oxygenation

(@) T Form (deoxy) (b) R Form (deoxy)
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T-State is Stabilized by Salt Bridges

*Also involved in Bohr Effect
«Salt bridges affect the pKa’s of the functional groups

o
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Figure 3.7. A simplified phylogenetic tree show-
ing the distant relationship between the bar-headed

goose and the Andean goose, both of which have
independently evolved high-affinity Hbs. A muta-

Biochemical adaptation: mechanism and process in
physiological evolution
Peter W. Hochachka, George N. Somero
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Electron Micrographs of Erythrocytes

Normal cells

Sickle cells
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Frequency in the population

HbS hetero ~ 25% of Africans

Ap — pQ[p(WAA B wAal+ Q(wAa B Waa)]

w

For w, ,>W,,>W,, stable solutions p=1 and p=0

Other stable solutions arise if W, ,>W,, W, ,>W, o

Heterozygous superiority.
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Malaria Before Columbus
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Origins of the Sickle Cell Gene

Greece
Italy Albania

HbS
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Kinetics of aggregation
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Fig. 1. Fractional extent of gelation versus time. Curve 1
results from rapidly changing the temperature of a 23.3 g %
deoxyhemoglobin S gel from 20°C to 2°C in an optical experi-
ment. Curves 2 and 3 were obtained by rapidly changing the
temperature of the same sample from 0°C, where it is a nonbire-
fringent liquid, to 20°C in calorimetric and optical experiments,
respectively. The total birefringence is taken as the birefringence
at infinite time, estimated by extrapolation of the last part of the
curve which approaches a limiting value exponentially.
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