What Does Hemoglobin Do?

Oxygen Binding

- Hb curve is sigmoidal cooperative
 releases significant O₂ under small changes in oxygen pressure

Related to function

- Hb is for transport from lungs to tissue
- Mb in tissue accepts O₂ from Hb, for storage (especially in aquatic mammals) and transport within the tissue

Mb and Hb

$$Mb + O_2$$
 MbO_2 $K = \frac{[Mb][O_2]}{[MbO_2]}$

Fractional saturation of O₂
$$Y_{O_2} = \frac{[MbO_2]}{[Mb] + [MbO_2]} = \frac{[O_2]}{K + [O_2]}$$

Use pO_2 instead of $[O_2]$ because it is a gas pGas = pressure of gas if it occupied total volume by itself

$$p_{50} = pO_2$$
 when $Y_{O_2} = 0.5$, then $K = p_{50}$
$$Y_{O_2} = \frac{pO_2}{p_{50} + pO_3}$$

In air of 1 atm is 760 torr, $pO_2 = 155$ torr

Similarly, for Hb with n multiple sites:
$$Y_{O_2} = \frac{pO_2^{n}}{p_{co}^{n} + pO_2^{n}}$$

Cooperative Binding Sites

•Assume: full cooperativity - n cooperative binding sites either all filled or all empty

$$P + nL$$
 PL_n $K_d = \frac{[P][L]^n}{[PL_n]}$

$$r = \frac{\text{ligand bound}}{\text{total protein}} = \frac{n[PL_n]}{[P] + [PL_n]} = \frac{n[L]^n}{K_d + [L]^n}$$

note: Book uses (moles ligand bound) / (moles sites) = $r/n = Y = \frac{[L]^n}{K_n + [L]^n}$

$$\frac{Y}{1-Y} = \frac{[L]^n}{K_d}$$
n indicates cooperativity, "Hill coefficient"
n = 1 no cooperativity
n < 1 negative cooperativity
n > 1 positive cooperativity

•Full cooperativity is ideal, normally n < number of binding sites

$$\log \frac{Y}{1-Y} = n \log [L] - \log K_d$$

$$\log \frac{Y}{1-Y}$$

$$\log |L|$$

$$\log |L|$$

Hb Conformational Changes

equilibrium T state - stabilized by salt bridges R state - stabilized by oxygen binding deoxy

What happens when O2 binds?

Domino effect of oxygen binding:

- 1. O₂ binds to heme iron
- 2. Fe is pulled into plane of heme
- 3. Proximal His (F8) is pulled closer to heme and reorients
- 4. Helix F shifts along with proximal His
- 5. Loss of salt bridges that stabilize T state
- 6. Contacts between $\alpha_{\text{1}}\beta_{\text{2}}$ click into new orientation
 - changes in H-bonding (switch region)
- 7. Causes similar changes at $\alpha_2 \beta_1$ interface
- 8. Can't have partial changes, whole molecule snaps into R
- 9. Deoxy-hemes in R state have much higher affinity for O₂ pre-organized for O₃

Structures of Mb vs Hb

First crystal structures of proteins

Mb - John Kendrew Hb - Max Perutz 1959 1968

Mb - muscle protein

- monomer, globular, ellipsoidal molecule 44 x 44 x 25 Å
- 8 helices, A-H
- heme is in a hydrophobic pocket
- 5th ligand (proximal) of heme-Fe is His F8
 in deoxy-Mb, no 6th ligand, Fe is 0.55Å out of plane towards proximal his
- protein prevents dimerization and auto-oxidation
- heme can also bind CO, NO, H₂S

- globular, 64 x 55 x 50 Å Hb

- $\alpha_2\beta_2$ dimer of ab protomers, 2-fold axis of symmetry
- α and β subunits have very similar 3° structure to Mb and to each other
- 4 corners of Td, hole in the middle
- so interactions are $\alpha_1\beta_1,\,\alpha_2\beta_2,\,\alpha_1\beta_2,\,\alpha_2\beta_1$ largely hydrophobic, a few H-bonds and ion pairs

equilibrium T state - stabilized by salt bridges R state - stabilized by oxygen binding deoxy оху

What happens when O₂ binds?

Domino effect of oxygen binding:

- 1. O₂ binds to heme iron
- 2. Fe is pulled into plane of heme
- Fe is pulled into piane or neme
 Proximal His (F8) is pulled closer to heme and reorients
 Helix F shifts along with proximal His
 Loss of salt bridges that stabilize T state
 Contacts between α₁β₂ click into new orientation

 changes in H-bonding (switch region)

- 7. Causes similar changes at $\alpha_2\beta_1$ interface 8. Can't have partial changes, whole molecule snaps into R
- 9. Deoxy-hemes in R state have much higher affinity for O₂ pre-organized for O₂

Electron Micrographs of Erythrocytes

Normal cells

Sickle cells


```
VHLTPEEKSAVTALWGKVNVDEVGGEALGRLLVVYPWTQRFFESFGD
VHLTP
EKSAVTALWGKVNVDEVGGEALGRLLVVYPWTQRFFESFGD
VHLTPVEKSAVTALWGKVNVDEVGGEALGRLLVVYPWTQRFFESFGD
Query:
helix
                                             58
                                             21
helix
helix
Query:
                                                  KAHGKKVLGAFSDGLAHLDNLKGTFATLSELHCDKLHVDPENFRLLG
                                                  KAHGKKVLGAFSDGLAHLDNLKGTFATLSELHCDKLHVDPENFRLLG\\ KAHGKKVLGAFSDGLAHLDNLKGTFATLSELHCDKLHVDPENFRLLG
Sbict:
(HEM,
           1 ) Protoporphyrin Ix G> 92
helix
helix
Query:
                                             122 EFTPPVQAAYQKVVAGVANALAHKYH 147
                                             Sbjct:
```

Frequency in the population

HbS hetero ~ 25% of Africans

$$\Delta p = \frac{pq[p(w_{AA} - w_{Aa}) + q(w_{Aa} - w_{aa})]}{\overline{w}}$$

For $w_{AA}>w_{Aa}>w_{aa}$ stable solutions p=1 and p=0 Other stable solutions arise if $w_{Aa}>w_{aa}$ $w_{Aa}>w_{AA}$ Heterozygous superiority.

Kinetics of aggregation

$$1/t_d = k \left(\frac{c_t}{c_s}\right)^n$$

Fig. 1. Fractional extent of gelation versus time. Curve 1 results from rapidly changing the temperature of a 23.3 g % deoxyhemoglobin S gel from 20°C to 2°C in an optical experiment. Curves 2 and 3 were obtained by rapidly changing the temperature of the same sample from 0°C, where it is a nonbire-fringent liquid, to 20°C in calorimetric and optical experiments, respectively. The total birefringence is taken as the birefringence at infinite time, estimated by extrapolation of the last part of the curve which approaches a limiting value exponentially.

Sickle Cell

