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Abstract. - Molecular motors transduce chemical energy obtained from hydrolizing ATP into
mechanical work exerted against an external force. We calculate their efficiency at maximum
power output for two simple generic models and show that the qualitative behaviour depends
crucially on the position of the transition state or, equivalently, on the load distribution factor.
Specifically, we find a transition state near the initial state (sometimes characterized as a “power
stroke”) to be most favorable with respect to both high power output and high efficiency at
maximum power. In this regime, driving the motor further out of equilibrium by applying higher
chemical potential differences can even, counter-intuitively, increase the efficiency.

Introduction. – Molecular motors are essential for
directed transport within the cell [1]. They typically op-
erate under nonequilibrium conditions due to the unbal-
anced chemical potentials of molecules like ATP or ADP
involved in the chemical reactions accompanying the mo-
tor steps. In contrast to macroscopic engines, fluctua-
tion effects are important thus allowing for backward steps
even in directed motion. The stochastic dynamics of these
motors under an applied load force can be probed experi-
mentally by single molecule assays (see, e. g., for kinesin
[2], myosin [3–5] or ATPase [6]). Generically, such biomo-
tors are modelled either in terms of continuous “flashing
ratchets” [7–10] or by a (chemical) master equation on a
discrete state space [11–17].
For macroscopic engines working between two heat

baths at temperatures T2 > T1, efficiency is bounded by
the Carnot limit ηC = 1−T1/T2. Since this limit can only
be achieved by driving the engine infinitesimally slowly,
thus leading to an infinitesimally small power output, it is
arguably more meaningful to characterize engines by their
efficiency at maximum power [18, 19]. This quantity has
been studied for more than 30 years under the label of
“finite-time thermodynamics” [18–22]. Recently, this con-
cept has been transferred to microscopic (Brownian) heat
engines in a variety of different model systems [23–25].
In contrast to heat engines, biomotors are driven by

chemical potential differences. The efficiency of such mo-
tors is bounded by ηmax = 1 [26]. This bound can only
be reached in an equilibrium situation corresponding to
a vanishing power output of the motor. In analogy with

heat engines, we here propose to investigate such motors
under the condition of maximum power output.
We start with a simple model system for a chemically

driven biomotor [11] and show that the qualitative results
also apply to a more realistic motor model involving a
second cycle. In this second model, a futile cycle leads
to ATP consumption even at the stall force. Mechanical
and chemical cycles are no longer tightly coupled. In both
cases, the efficiency at maximum power crucially depends
on the position of the transition state or, equivalently, on
the load distribution factor. In fact, a transition state
near the initial position is most favorable with respect to
a maximal motor power output. For the efficiency at max-
imum power, we obtain two counter-intuitive results : (i)
it increases when the transition state position is changed
in such a way that the power output rises and (ii) it can
increase when the system is driven further out of equilib-
rium by a higher chemical potential difference.

Model I. – We first consider a linear molecular
motor with equivalent discrete states (sites) Xn (n =
0,±1,±2, . . . ) with distance l between the sites and next-
neighbour transitions between these states subject to a
force F in backward direction, see Fig 1. Forward re-
actions are assumed to be driven by ATP molecules
with chemical potential µATP and backward transitions
by ADP and P molecules with chemical potentials µADP

and µP, respectively,

ATP +Xn
w+

⇋
w−

Xn+1 +ADP + P. (1)
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Fig. 1: (Color online) Scheme of the free energy landscape V (x)
of a molecular motor with step size l. The transition state
position δ determines the force dependence of the transition
rates.

If the dilution of all involved species is high, we can as-
sume mass action law kinetics for the rate constants. Ad-
ditionally, we assume the usual force dependence of rate
constants [11] such that the transition rates for forward
and backward steps are given by

w+ = cATPk
+e−βδF l (2)

w− = cADPcPk
−eβ(1−δ)Fl, (3)

respectively. Here, ci are the (dimensionless) concentra-
tions of imolecules (i = {ATP,ADP, P} ) and β ≡ 1/kBT
with Boltzmann’s constant kB. The bare reaction rates
k+, k− are concentration independent. The load distri-
bution factor 0 ≤ δ ≤ 1 characterizes the location of the
transition state, see Fig. 1. It can vary between the ex-
treme cases δ = 0 (sometimes characterized as a “power
stroke” [27] ) and δ = 1, where forward or backward rate
constants, respectively, no longer depend on the force. The
chemical potential of the involved molecules is

µi = µ0
i + kBT ln ci, (4)

with a reference value µ0
i . Thermodynamic consistency

requires

w+/w− = e(∆µ−Fl)/(kBT ), (5)

where ∆µ ≡ µATP − µADP − µP. The (mean) velocity of
the motor can then be calculated as

v = l(w+ − w−) = k−cADPcPl
[

eβ(∆µ−δF l) − eβ(1−δ)Fl
]

.

(6)
Thermodynamic quantities for each single transition can

now be defined [15, 28, 29] on the basis of the transition
rates. The chemical work applied during one forward step
is just the chemical potential difference Wchem = ∆µ. The
mechanical work delivered by the molecular motor during
a single forward step against the applied force F is given
by W = Fl. Since all states are equal, the internal en-
ergy does not change, ∆E = 0, and thus the difference
Q ≡ Wchem−W is dissipated as heat in the thermal envi-
ronment. The efficiency η of this chemical motor is given
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Fig. 2: (Color online) Maximum power Ẇ ∗ in units of
k−cADPcPkBT exp(β∆µ) as a function of the position of the
transition state δ.

by the ratio of mechanical work and chemical work applied
by the chemical potential difference [26] as

η =
W

Wchem
=

Fl

∆µ
. (7)

With the force velocity relationship (6), the power output
follows as

Ẇ ≡ Fv = k−cADPcPlF
[

eβ(∆µ−δF l) − eβ(1−δ)Fl
]

. (8)

The power Ẇ is zero for F → 0. When the force ap-
proaches the stall force F → F st ≡ ∆µ/l, where the ve-
locity vanishes, the power output also becomes infinites-
imally small. Thus, there is an optimal force F ∗, where
the power output is maximal for a given chemical potential
difference ∆µ. This optimal force is given by dẆ /dF = 0
which leads to the implicit relation

eβ∆µ = eβlF
∗ 1 + (1− δ)βlF ∗

1− δβlF ∗
. (9)

For given β∆µ, the scaled optimal force βlF ∗ depends
only on the parameter δ. The optimal power Ẇ ∗ is shown
in Fig. 2 as a function of the transition state position δ.
Numerical results for the efficiency at maximum power η∗

are shown in Fig. 3. Note that the latter results are quite
universal since no kinetic parameters enter these graphs.
Both, power output and efficiency increase with decreas-
ing δ and thus, a transition state near the initial position
(δ = 0) is most favorable. Previously, it has been specu-
lated [27] that such a mechanism, where forward rates are
almost independent of the force, is realized in molecular
motors in order to reach a large motor velocity (corre-
sponding to a high power output). Beyond corroborating
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Fig. 3: (Color online) Efficiency at maximum power η∗ as a function of (a) the position of the transition state δ and (b) the
chemical potential difference ∆µ for Model I.

this idea, we find as a new result that small δ also leads
to a higher motor efficiency at maximum power. This
is somewhat counter-intuitive since an increase in power
usually leads to a decrease in efficiency.
In the limit of small chemical potential differences

(where the motor works in a linear response regime near
equilibrium), efficiencies at maximum power can be ob-
tained analytically. In this limit, the stall force also be-
comes small and thus the exponentials in (6) can be ex-
panded and truncated after the first order in ∆µ and F
leading to the approximate force-velocity relation

v ≈ k−cADPcPβl(∆µ− Fl). (10)

In analogy to the linear response result for heat engines
[30], the efficiency at maximum power universally becomes
η∗ = 1/2. Beyond linear response, as a somewhat surpris-
ing result, the efficiency at maximum power increases for
increasing chemical potential differences for positions of
the transition state δ < 1/2, compare Fig. 3b. Usually,
dissipative cost increases when the system is driven further
out of equilibrium.

Model II. – In order to check the generality of the
results obtained for the (simple) Model I, we now calcu-
late the efficiency at maximum power for a more involved
motor model. Recent experiments focussing on the back-
steps of kinesin [2] indicate that a realistic motor model
should comprise at least one additional cycle [2, 16, 17]
leading to non-zero dissipation even at stall force. Such a
mechanism with additional motor cycles presumably also
applies to myosin motors which have a similar molecular
structure [31]. In order to capture the main experimental
finding of ATP -driven backsteps from Ref. [2], we propose
a minimal model as shown in Fig. 4. This model is very

similar to recent kinesin models [2, 16, 17] and thus cap-
tures experimental findings qualitatively. Binding and hy-
drolyzing ATP leads to the unbinding of one motor head.
The elastic energy then leads to a biased diffusive search
for the next binding site. For high load forces, the prob-
ability of a backstep increases. Note that such backsteps
involve ATP consumption and thus decrease the coupling
ratio between chemical and mechanical motor cycles. The
force dependence is modelled as

w+
21 = k+21e

−βδ1lF , w+
12 = k+12e

−β(1−δ2)lF

w−

21 = k−21e
βδ2lF , w−

12 = k−12e
β(1−δ1)lF (11)

with the transition state located at δ1,2 for forward
and backward steps, respectively. Thermodynamic con-
sistency requires k+21/k

−

12 = exp(β∆E), k−21/k
+
12 =

exp(β∆E), and w12/w21 = exp[β(∆µ−∆E)] where ∆E is
the potential energy difference between state 1 and state
2. Given all rate constants, the steady state can be calcu-
lated as

ps1 =
w21 + w+

21 + w−

21

w21 + w+
21 + w−

21 + w12 + w+
12 + w−

12

, (12)

ps2 =
w12 + w+

12 + w−

12

w21 + w+
21 + w−

21 + w12 + w+
12 + w−

12

(13)

with motor velocity

v = l
[

ps1(w
+
12 − w−

12) + ps2(w
+
21 − w−

21)
]

. (14)

The power output of the motor is Ẇ = Fv. Chem-
ical work is applied to the motor only in the (vertical)
transitions involving ATP and ADP + P . In such a step,
chemical energy of amount ∆µ is transferred to the system

p-3



Tim Schmiedl and Udo Seifert

w
−

21

w21
w

+
12

w
+
21

w
−

12
w12

w
−

21

w21
w

+
12

w
+
21

w
−

12
w12

w
−

21

w21
w

+
12

w
+
21

w
−

12
w12

-500
-400
-300
-200
-100

0
100
200

-10 -5 0 5 10

v
(F

)

F

(a)

(b)

(c)

(d)

0
0.05
0.1

0.15
0.2

0.25
0.3

0.35
0.4

0 0.2 0.4 0.6 0.8 1

η
∗

δ

20
10
5
2

∆µ/(kBT )

Fig. 4: (Color online) Two-cycle model for a molecular motor (Model II). (a) Scheme of the reaction pathways. (b) Definition
of rate constants. (c) Efficiency at maximum power as a function of the transition state position δ ≡ δ1 = δ2 with w21 =
0.275/s, k−

21 = 0.7/s, k+
21 = 1.8/s,∆E = 10kBT . (d) Relation between force [in pN ] and velocity [in nm/s] for δ1 = 0.004, δ2 =

0.024, w21 = 0.275/s, k−

21 = 0.7/s, k+
21 = 1.8/s,∆E = 10kBT,∆µ = 20kBT, l = 9(kBT )/pN ≃ 36nm compared to corresponding

data from myosin experiments [5]. For these parameters, the optimal force is F ∗

≃ 1.5pN and the efficiency at maximum power
becomes η∗

≃ 0.18.

and thus the chemical work per unit time is

Ẇchem = ∆µ(ps1w12 − ps2w21). (15)

The motor efficiency η ≡ Ẇ/Ẇchem can then be calculated
for a given set of rate constants and a given force.
We again ask for the optimal force leading to a maxi-

mal power output. We recover the qualitative results of
Model I for the maximum power (data not shown) and
the efficiency at maximum power, see Fig. 4c, also in this
(more realistic) model of a molecular motor. Specifically,
the largest efficiency can be achieved for both transition
states near the initial position (δ ≡ δ1 = δ2 = 0). For
small δ, the efficiency first increases with increasing chem-
ical potential difference ∆µ until it reaches a maximum.
The advantage of a transition state near the initial posi-
tion with respect to high power output and high efficiency
thus seems to be a quite general characteristics for molec-
ular motors. Note that efficiencies are generally lower due
to the ATP -driven backward steps leading to additional
dissipation in such models with additional cycles.

Discussion. – In summary, we have first investigated
a simple genuine model of a molecular motor under the
condition of maximum power output. As our main result,
we find that a transition state near the initial position
yields both the largest power output and the largest effi-
ciency at maximum power. Qualitatively, this behaviour

is also recovered in a more realistic model involving a sec-
ond motor cycle. The advantage of a small load distri-
bution factor δ with respect to large power output and
high efficiency at maximum power thus seems to be quite
generic. We have assumed 0 ≤ δ ≤ 1 throughout this
letter. Recently, it has been proposed to use δ < 0 to in-
terpret non-monotonous force velocity relations [32]. For
negative δ < 0, the efficiency at maximum power is even
larger than for δ = 0 in both our model systems.
For both models, the efficiency at maximum power can

increase when the system is driven further out of equilib-
rium by a higher chemical potential difference. This result
should be distinguished from previous work predicting a
maximal efficiency for non-zero chemical potential differ-
ences [17, 26]. In our first model, the efficiency decreases
monotonically as a function of the chemical potential dif-
ference for a given load F .
For kinesin motors, it is difficult to find clear evidence

for a putative design principle of a transition state near the
initial position. While previous studies have found small
δ . 0.1 for the main motor step [13], a transition state in
the range δ ≃ 0.3...0.65 has been extracted recently [16].
For myosin motors, small δ has been reported for the main
motor step (δ < 0.1 [4], [14]) , which is also supported by
our model II as detailed in the following.
In Fig. 4d, the force velocity relation of our model with

appropriate rate constants is compared to a recent myosin
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experiment [5]. For forces F > 0, the experimental data,
including a step at F ≃ ∆µ/l, is captured by our sim-
ple model. For negative forces, our model shows a second
step at F ≃ −∆µ/l which is not present in the experimetal
data. Both steps in the theoretical model are explained by
the fact that for large forces |F | ≫ ∆µ/l, vertical (ATP
driven) transitions are slow compared to the horizontal
(force dependent) transitions and the motor is basically
pulled by the load. The step at negative forces could be
eliminated by introducing a force dependent energy dif-
ference ∆E(F ) which corresponds to an additional force
dependence of the vertical transitions. However, instead
of introducing new parameters, we keep the simple model
II and extract from the crude fit shown in Fig. 4d transi-
tion state positions δ1 = 0.004, δ2 = 0.024. These values
mainly determine the behaviour of the molecular motor at
large loads |F | ≫ ∆µ/l. With these parameters, we find
an efficiency at maximum power of η∗ ≃ 0.18 which, given
the strong decay of η∗ with increasing δ, is quite close to
the optimal value η∗ ≃ 0.31 for δ1 = δ2 = 0, see Fig. 4c.

We do not claim that our simple model can explain all
aspects of myosin motility. Rather, we have chosen model
II in order to probe the robustness of our main results
concerning the efficiency at maximum power. In order to
construct a comprehensive model of myosin, more experi-
mental data seem to be necessary.

If future experiments confirm the indication that myosin
motors have a transition state near the initial position for
the main motor step (corresponding to an almost force-
independent forward rate), it would be tempting to specu-
late whether evolutionary pressure for efficiency and large
power has led to this characteristic. For a more com-
prehensive answer to this question, however, other evolu-
tionary goals like speed, robustness, and high processivity
should be considered. Likewise, the dependence of our
results on the interaction between single motor domains
needs to be explored in future work.
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