
3.2 Molecular Motors

A variety of cellular processes requiring mechanical work, such as movement, transport
and packaging material, are performed with the aid of protein motors. These molecules
consume fuel, typically from conversion of ATP to ADP, to generate force and motion. Unlike
macroscopic engines which proceed deterministically through a cycle, the tiny molecular
machines are constantly agitated by thermal fluctuations and their operation is inherently
stochastic. There are two common elements to most molecular motors:
• An asymmetry that determines the direction of motion. In the case of myosin this is
provided by the polarity of actin filaments along which it moves, e.g. in contracting muscles.
Kinesin and dynein are two motors that transport cargo along microtubules (MTs), but in
opposite directions; kinesin moving to the (+) end, and dynein towards the (-) end.

• The asymmetry encountered by motors is reminiscent of ratchets: The motor experiences a
periodic but asymmetric potential along its track. However, it is well known that Brownian
ratchets cannot extract energy from thermal fluctuations. In equilibrium there is no directed
motion despite asymmetry, and an energy consuming mechanism is needed to rectify motion
in a ratchet potential. A general scheme is for the motor to have a number of internal

states, e.g. bound to ATP or ADP, each of which experiences a different ratchet potential.
As we shall see, moving between the internal states enables trapping and rectifying the
fluctuations. We can get a rough estimate of the forces generated by molecular motors as
follows: A typical step size for kinesin along a MT is a ≈ 8.2nm, and the energy released by
hydrolysis of one ATP molecule in physilogical conditions is about ∆Gh = 12kBT . Assuming
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the energy released by hydrolysis of a single ATP is completely used up, without any loss to
to move an object against a uniform force F , leads to a maximal possible force of Fmax =
∆Gh/a ≈ 6.2 pN.

3.2.1 Asymmetric Hopping

Rather than working with a continuous ratchet potential, we can capture much of the same
physics by examining so called asymmetric hopping models,3 in which the motor makes
discrete jumps along its track. However, at each site along the track, it can be in a number
of internal states. For example, in the system depicted below, there are 4 internal states
at each site, e.g. corresponding to: MT, MT+ATP, MT+ADP+P, MT+ADP. One then
assigns rates for transitions along the track and between internal states. With appropriate
choice of asymmetric rates the motion can be biased in one direction.

Let us demonstrate the procedure and the constraints involved for a simple model with
only two internal states, say representing the motor bound to ATP or ADP. Let us assume
that the ADP bound state does not bind too strongly to the microtublue, and hops to either
of its neighbors at a rate h. By contrast the ATP bound state is strongly attached to its
site, and does not hop. We shall denote the rates for transitions from ADP to and from ATP
bound states at the same site by u and d, respectively. Asymmetry is introduced into the
model, by allowing jumps to the meighborings sites along the track, but only if accompanied
by a change in internal state, and we assign asymmetric rates of r and l for moving to the
right (T→D) and the left (D→T) respectively. The Master equations governing the evolution
of probabilities for these states are

dpD(n, t)

dt
= rpT (n− 1) + dpT (n)− (u+ l)pD(n) ,

dpT (n, t)

dt
= lpD(n + 1) + upD(n)− (d+ r)pT (n) . (3.24)

For slowly varying probabilities, the continuum form of these equations is

∂pD(x, t)

∂t
= (r + d)pT (x)− (u+ l)pD(x)− ar

∂

∂x
pT (x, t) +

a2r

2

∂2

∂x2
pT (x, t) + a2h

∂2

∂x2
pD(x, t) ,

∂pT (x, t)

∂t
= (l + u)pD(n)− (d+ r)pT (n) + al

∂

∂x
pD(x, t) +

a2l

2

∂2

∂x2
pD(x, t) . (3.25)

3M.E. Fisher and A.B. Kolomeisky, PNAS 96, 6597 (1999).
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The similarity of the above to Eqs. (3.1) is now apparent. We can thus again extract the
behavior of the above equations for slow and long wavelength variations by first noting that
(relatively) rapid interconversion between internal states leads to a local equilibrium in which

(l + u)pD(x) = (r + d)pT (x) , (3.26)

or in terms of the net probability, p(x) = pT (x) + pD(x),

pT (x) =
u+ l

u+ d+ r + l
p(x) and pD(x) =

d+ r

u+ d+ r + l
p(x) . (3.27)

Adding the two Eqs (3.25) and substituting from Eq. (3.27) leads to a standard drift-diffusion
equation for p(x, t), with drift velocity

v = a
ru− ld

u+ d+ r + l
, (3.28)

and diffusion coefficient

D =
a2

2

ld+ ru+ 2lr

u+ d+ r + l
. (3.29)

Note that a back and forth jump (at rate lr) makes no contribution to the drift, but increases
the overall diffusion coefficient.

The requirement of thermal equilibrium places stringent constraints on any pair of for-
ward/backward reaction rates. According to the condition of detailed balance, the equilibrium
probabilities p∗i for a set of states {i} are related to the transition rates {Rij} by

Rijp
∗
i = Rjip

∗
j , (3.30)

for any pair of states i and j. In the absence of an external potential all sites {n} in our
model are equivalent in steady state, and the corresponding probabilities must thus satisfy

p∗T
p∗D

=
u0

d0
=

l0
r0

, (3.31)

where the zero subscript indicates the rates corresponding to equilibrium. In this case,
r0u0 = l0d0, and there is no net velocity, v = 0. Thus asymmetry by itself is not sufficient
for directed motion as expected.

The hydrolysis of ATP provides a (non-equilibrium) source of energy and modifies the
transition rates. For example, consider thermal equilibrium between two states of energies
UT and UD. The transition rates between the two states are then related to the equilibrium
probabilities by p∗T/p

∗
D = exp[−β(UT − UD)] = u0/d0. We can imagine that consumption

of ATP from the environment provides a boost of energy that reduces the energy required
for transition between the two states to UT → UT − ∆Gh, thus increasing the probability
flux from D to T such that u → u0 exp(β∆Gh). If the other rates are unchanged, the drift
velocity now becomes

v = a
ld

u+ d+ r + l

(r

l

u

d
− 1

)

=
ald

u+ d+ r + l

(

eβ∆Gh − 1
)

> 0 . (3.32)
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3.2.2 Force of a Brownian Motor

To find out how efficiently the energy input from ATP is converted to work, a possible route
is to examine the force exerted by the motor in traveling a distance a at each step. This
is not an easy task as it is not possible to directly measure all dissipative and other forces
acting on the small molecule. The following procedures have been used to estimate forces
on the motor.

The stall force is obtained by pulling the motor back with an optical tweezer. The
motor must now also climb up against the potential from the external force F , resulting in

r

l

∣

∣

∣

F
=

r

l

∣

∣

∣

0
e−βFa and v = a

ld

u+ d+ r + l

(

eβ(∆Gh−Fa) − 1
)

. (3.33)

Clearly the motor stalls (v = 0) when F = Fs = Fmax = ∆Gh/a. This agrees with our
previous rough estimate, as there are no frictional forces (and corresponding dissipate losses)
for a stationary motor.

The Einstein force is obtained by analogy to Brownian particles from a ratio of velocity
and diffusion coefficients. It is possible to image the motion of a motor (more precisely its
cargo) along its track. The motion is typically jerky, with back and forth steps, from which
a diffusion coefficient can be extracted, along with an average velocity. This is reminiscent
of Brownian motion of a small particle in a fluid. A particle in solution experiences a drag
force proportional to its velocity, such that v = µF where µ is its mobility. With or without
an external force, the particle also diffuses in solution with diffusion constant D. Diffusion
originates in collisions with thermally excited molecules of the fluid, and to ensure proper
thermal equilibrium the mobility and diffusion constant must be related by the Einstein
relation, D = µkBT . For our asymmetric hopping model we can similarly postulate an
Einstein force

FE = kBT
v

D
=

2kBT

a

ru− ld

rd+ lu+ 2lr
=

2kBT

a

ru
ld − 1

1 + ld
ru + 2 r

d

, (3.34)

where we have used the values for drift and diffusion of the motor along its track from
Eqs. (3.28) and (3.29). Since (ru)/(ld) = eβ∆Gh, in the limit β∆Gh → 0

FE ≈
Fmax

1 + r
d

,
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while for β∆Gh ≫ 1, FE ∼ kBT/a. Thus the Einstein force is always less than the maximum
possible force, and limited by thermal fluctuations.

The force at maximal power provides yet another perspective: Working against a
force F , the motor drifts with an average velocity v(F ), utilizing a power Ẇ = Fv(F ) from
hydrolysis of ATP. Ẇ is zero at F = 0 and also at the stall force where v(Fs) = 0, with a
maximum at some intermediate F ∗. Maximizing the expression for Ẇ , using Eq. (3.28) leads
to a transcendental equation for F ∗. The equation is simplified in the regime β∆Gh → 0,
which leads to a linear response v ∝ (∆Gh − Fa) and Ẇ ∝ Fa(∆Gh − Fa). Extremizing
the above expression clearly leads to

F ∗ =
∆Gh

2a
=

Fmax

2
.

3.3 Brownian Motion

To better understand some of features of force and motion at cellular and sub cellular scales,
it is worthwhile to step back, and think about Brownian motion. With a simple microscope,
in 1827 Robert Brown observed that pollen grains in water move in haphazard manner. From
a Newtonian perspective, this is surprising as force is required to initiate motion and cause
changes in direction. Where does this force come from; could it be that the observed particles
are in some sense active and ‘alive,’ generating their own motion? The classic 1905 paper by
Albert Einstein demonstrates that no active mechanism is necessary, and that the random
forces generated by the thermally excited water molecules can account for the motion of the
grains. This explanation was confirmed by Jean Perrin in 1908, for which he was awarded
the Nobel prize in 1926.

Let us for simplicity indicate the position of the particle by a one-dimensional coordinate
x (e.g. its vertical position); extension to more coordinates is trivial. According to Newtonian
dynamics, the particle accelerates in response to forces it experience. When the particle at
x is immersed in fluid, this includes in addition to external potential forces (e.g. due to
gravity), a frictional force due to the fluid viscosity. The deterministic equation governing
motion is them

mẍ = −
∂V

∂x
−

1

µ
ẋ . (3.35)

For a sphere of radius a, the viscous drag (and corresponding mobility µ) is given by

µ =
1

6πaη
, (3.36)

where η is the specific viscosity of the fluid.
It is important to have a measure of the relative importance of the inertial and viscous

terms in the above equation. Let us consider an object (not necessarily a solid sphere) of
typical size a and density ρ, moving with velocity v in a fluid. The inertial force necessary
to bring to rapidly change its velocity, e.g. to bring it to rest over a distance of the order of
its size, is Finertial ∼ mv(v/a) ∼ ρa2v2. The dissipative force due to the fluid viscosity is of
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order Fviscous ∼ ηav. The relative importance of the two forces is captured by the Reynolds
number

Re =
Finertial

Fviscous
=

ρav

η
. (3.37)

Our physical experiences of motion in fluids relate to the realm of large Reynolds number:
We are mostly interested in water and room temperature, which has a kinematic viscosity
of η/ρ ≈ 10−6m2s−1; and for an animal swimming in water Re ≈ 1m× 1ms−1/10−6m2s−1 =
106 ≫ 1. Even if the motive force is stopped, the animal will continue to move in the
fluid due to its inertia. By contrast, cell and subcellular motion belong to the realm of low
Reynolds numbers. For example, a typical bacterium is a few microns is size, and moves
at velocities of around 30µs−1, translating to a Reynolds number of around 10−4 ≪ 1. For
molecular motors, relevant length scales are of the order of 10nm, with velocities of order of
1µs−1, leading to even smaller Re ≈ 10−8. The classic paper “Life at Low Reynolds Number”
[Am. J. Phys. 45(1), 1977] by Purcell contains many interesting observations about this
limit.

At such small Reynolds numbers we can neglect the left-hand side of Eq. (3.35), conclud-
ing that velocity is proportional to external force:

ẋ = F = −µ
∂V

∂x
.

Of course, by the time we get down to the short scales of microns and below, we should no
longer treat water as a continuous fluid; rather, its particulate nature comes into play. The
water molecules are constantly moving due to thermal fluctuations, and their impacts on
the larger immersed objects results in a random force η(t), leading the stochastic equation
of motion

ẋ = −µ
∂V

∂x
+ η(t). (3.38)

A random impacts from all around an immersed object should average to zero over time,
but there will be instantaneous fluctuations. We expect the random forces experienced over
times longer than typical intervals between collisions to be uncorrelated, leading to

⟨η(t)⟩ = 0, (3.39)

⟨η(t)η(t′)⟩ = 2Dδ(t− t′). (3.40)

Since the force is the outcome of summing over many impacts, it is reasonable to expect the
central limit theorem to hold, leading to Gaussian statistics, i.e.

p[η(t)] ∝ exp

[

−
1

2D

∫ t

η(t′)2dt′
]

. (3.41)

In the absence of external force, the position of the particle evolves as

x(t) = x(0) +

∫ t

0

dt′η(t′).
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It is then easy to check that
⟨x(t)− x(0)⟩ = 0, (3.42)

while the mean-squared dispersion is given by

〈

[x(t)− x(0)]2
〉

=

∫ t

0

dt′1dt
′
2 ⟨η(t

′
1)η(t

′
2)⟩ = 2Dt. (3.43)

The above equation thus relates the various of the force to the observed diffusion coefficient
of the particle in the fluid.

The stocastic Eq. (3.38) is the Langevin equation for the coordinate x. Different realiza-
tions of the force η(t) lead to different values of x(t); we can also construct a corresponding
Fokker-Planck equation governing the evolution of the probability p(x, t). In the absence
of a potential (as discussed above), this is simply the diffusion equation, with a diffusive
probability current JD = −D∂p/∂x. More generally, we can write the continuity equation

∂p(x, t)

∂t
= −

∂J

∂x
, (3.44)

where J now includes an additional drift term such that

J = v(x)p(x, t)−D
∂p

∂x
, (3.45)

with v(x) = µF = −µ∂V /∂x. The probability thus satisfies the Fokker-Planck equation:

∂tp(x, t) = −∂x(v(x)p)−D∂2
xp . (3.46)

We are discussed the steady state solution for drift-diffusion processes, which in this case
leads to

p∗(x) ∝ exp
(

−
µ

D
V (x)

)

. (3.47)

However, in the particle is in thermal equilibrium at a temperature T , its steady state prob-
ability must be related to the potential through Boltzmann weight

p∗ ∝ exp

(

−
H

kBT

)

∝ exp

(

−
V (x)

kBT

)

. (3.48)

. This implies that the diffusion constant (and hence the variance of the random force) is
given by

D = µkBT. (3.49)

This important Einstein equation relates noise at microscopic level (D) to macroscopic dis-
sipation (µ) in equilibrium at a temperature T . Its violation could for example indicate that
the microscopic trajectory of a particle observed in water is not Brownian, possibly hinting
at a live entity. Indeed, since the Hamiltonian in Eq. (3.48) may include several degrees of
freedom (other coordinates, kinetic and rotational energies), it can in principle be used to
discriminate between passive (equilibrium) and active (non-equilibrium) processes.
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