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CHAPTER 5 

Affinity maturation of the antibody response 

________________________________________________________________________ 

Introduction 

Antibodies play a key role in protecting us from infectious disease-causing pathogens. 
They act principally to neutralize free pathogens present in blood or extracellular spaces. 
If an antibody binds to the proteins on the surface of a pathogen (e.g., spike proteins of a 
virus), it can prevent the pathogen from binding to host cell receptors, thus preventing 
infection of new cells. As described in Chapter 2, antibody bound pathogens are 
neutralized in diverse ways by the innate immune system. Antibodies can also target 
pathogens in other ways. For example, they can bind to pathogens on host cell surfaces, 
such as virus particles budding out of an infected cell. Various processes that ensue after 
antibody binding can then eliminate infected cells. 

A remarkable aspect of adaptive immunity is that, upon infection by a pathogen, a 
Darwinian evolutionary process called affinity maturation (AM) ensues. This process 
results in the production of memory B cells and antibodies that are specifically tailored to 
combat the invading pathogen. In this chapter, we will study mechanistic models of how 
the immune system learns to tailor B cell responses to be specific for a particular 
pathogen. We will first briefly consider the situation where AM occurs in response to a 
single antigen. The antigen could be a pathogen, some form of a pathogen used in a 
vaccine, or any foreign substance. In such cases, AM results in the production of 
antibodies that bind avidly to one specific antigen. As we saw in Chapter 4, mutable 
pathogens, such as HIV, SARS-CoV-2 and influenza, can mutate to evade antibody 
responses that target a particular strain. The majority of this chapter will focus on 
studying how the B cell and antibody response evolves when driven by multiple variants 
of an antigen. A mechanistic understanding of this process can aid the design of 
vaccination protocols that aim to direct AM to produce antibodies that can effectively 
target diverse strains of mutable pathogens. This problem raises many interesting issues 
that lie at the intersection of non-equilibrium statistical mechanics, evolutionary biology, 
immunology, and learning theory.  

5.1: Affinity maturation in response to a single antigen       

Before studying this chapter, readers are encouraged to reacquaint themselves with the 
biology of AM described in Chapter 2. To briefly recapitulate, germline B cells whose 
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receptors can bind sufficiently strongly to an antigen can get activated and seed germinal 
centers (GC) in lymph nodes. Activated GC B cells multiply, and an enzyme called AID that 
is expressed in these cells acts to introduce mutations into their BCRs at a high rate. These 
processes occur in the so-called Dark Zone (DZ) of the GC. The B cells then migrate to 
another region of the GC, called the Light Zone (LZ), and interact with the antigen 
displayed on the surface of Follicular Dendritic Cells (FDCs). B cells expressing a BCR that 
bind sufficiently strongly to the antigen can potentially internalize the antigen. The 
antigenic proteins are chopped into peptides and some of these peptides are displayed 
on the surface of B cells in complex with MHC (HLA)class II molecules. The B cells that 
present antigenic peptide-MHC molecules on their surface then compete to interact with 
T helper cells that were activated by interactions with the same pMHC complexes 
displayed on other infected APCs. A productive interaction results in a survival signal. A 
fraction of the positively selected B cells differentiate into memory cells and antibody 
secreting plasma cells, and exit the GC. The majority of positively selected B cells is 
recycled for further rounds of mutation and selection.    

Mechanistic modeling of affinity maturation played a major role in discovering that most 
positively selected B cells are recycled in the GC after each round of mutation and 
selection. Experiments with animal models showed that, as affinity maturation proceeds, 
the antigen affinity of the generated antibodies can increase by up to a thousand to ten 
thousand-fold. Affinity increases were observed to occur in stages, accompanied by the 
accumulation of mutations over time. In 1997, Perelson and co-workers constructed a 
mathematical model of the GC process, and the results suggested that these observations 
could only be explained if there were multiple rounds of mutation and selection, not just 
one. Let us briefly discuss some aspects of this influential study. 

In Perelson’s model, after about 6 days, proliferation-dependent mutation due to AID was 
turned on. The mutation probability is estimated to be of the order of 10-3 per base pair 
per replication cycle, and the size of the genes encoding the variable regions of the heavy 
and light chains of the BCR range from roughly 400 - 600  base pairs. So, mutations occur 
with a probability of roughly 0.1 per BCR genome. About a third of the mutations are 
thought to be lethal for reasons that include the inability of the BCR to fold properly. 
Mutations can also change the affinity of the BCR for the antigen or have no effect on 
affinity (silent mutations). For affinity changing mutations, deleterious mutations are 
more likely than beneficial ones because there are only a few BCR sequences that bind 
well to any given antigen, but there are many that do not. In Perelson’s model, B cells 
could have one of six discrete affinities for the antigen. Two affinity classes (labeled, -1 
and -2) had worse antigen affinity compared to germline B cells (class 0) that seeded the 
GC (with -2 being worse than -1); three affinity classes (labeled, 1, 2, and 3) had 
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increasingly improved affinities compared to the germline B cells. Mutations that were 
not silent could change the affinity by one affinity class.  

Perelson and co-workers constructed a mean-field model to describe processes that occur 
in the GC. The abundance of each species in the GC was described by an average 
concentration, and ordinary differential equations described the dynamics of GC 
processes. GC B cells multiplied at a certain rate in the DZ. Each type of mutation noted 
above was described by a probability of occurrence per unit time (or rate). After 
replication and mutation, GC B cells migrate from the DZ to the LZ, and this process was 
explicitly modeled. In the LZ, B cells were considered to die rapidly unless they were 
positively selected (since GC B cells are apoptotic – see Chapter 2). The FDCs had “sites” 
that contained antigen. The number of sites declined with time because antigen decays 
and is consumed by B cells, and this was modeled as an exponential decay with a fixed 
characteristic time. The binding of each B cell to a FDC site was described by a rate of 
binding and a rate of dissociation. The difference in affinity between two adjacent affinity 
classes was modeled as a five-fold difference in the rate of binding, with the dissociation 
rate staying unchanged upon an affinity changing mutation. If the B cell could bind to the 
FDC site, it could be positively selected. The details of the selection process were not 
considered, and it was assumed that a fraction of the B cells that could bind to the FDC 
sites was positively selected. The others could dissociate from the FDC site and become 
LZ B cells that either died or bound to sites on FDCs again. A fraction of the positively 
selected B cells differentiated into memory cells and exited the GC, and the rest were 
recycled to the DZ for further rounds of mutation and selection. 

Using values of parameters that were known from experiments or estimated, the 
differential equations describing the processes noted above were solved numerically. An 
important prediction of the model was that the extent of experimentally observed 
increases in antibody affinities during affinity maturation could only be realized if a 
significant fraction of B cells that were positively selected was recycled for further rounds 
of mutation and selection (Fig. 5.1). Of course, this also meant that the affinity of the 
produced antibodies increased with time in steps (or rounds of mutation and selection), 
as observed in experiments. Definitive proof of the prediction of recycling made by 
Perelson and co-workers had to wait for more than a dozen years until analyses of results 
from multiphoton microscopy experiments provided vivid images of the dynamic 
trajectories of GC B cells, and recycling was observed. 
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The principal reason for why recycling is required to achieve the affinity increases 
observed in experiments is that one round of mutation is unlikely to produce B cells with 
the large changes in affinity observed in experiments. This conclusion can be reached by 
making a rough estimate. Let there be M B cells in the DZ that divide N times (and 
potentially mutate) before migrating to the LZ for selection. M is of the order of a 1000 
and N is of the order of 2-4 (i.e., O (1)). Let us estimate the average number of these B 
cells that can proliferate and mutate in one round in the DZ to produce B cells with an 
affinity change of ten thousand-fold (i.e., a change in binding free energy equal to about 
7 – 8 Kcal/mol at physiological temperature).  

The probability, P (x), of observing a mutational trajectory of a B cell that results in a 
change in free energy of binding equal to x in one cycle of N divisions can be estimated as 
follows: 

𝑃	(𝑥) = 	∑ [∏ 𝜇 ∗	(1 −	𝑝!)	𝑝	(𝑥")]	#
"$% ]{
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where µ is the probability that a mutation occurs in the BCR gene, pl is the probability that 
a mutation is lethal, p (xi) is the probability that in the ith step a change of binding free 
energy equal to xi occurred, d denotes Dirac’s delta function, and {𝑋*222⃗ } denotes summing 
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over various mutational trajectories with different combinations of values of xi that sum 
up to x. In writing Eq. 1, we have ignored mutational trajectories that result in changes in 
binding free energy greater than x, which can be corrected by replacing the delta function 
in Eq. 1 with a step function. As we shall see below, the probability of occurrence of 
trajectories that result in a value of x corresponding to 7 – 8 Kcal/mol is very low. 
Therefore, this approximation is not concerning.  

Given that the probability that there is a mutation in the BCR is roughly 0.1 and pl is 0.3, 
the average number of positive outcomes (affinity change equal to x), O (x), is: 
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The PINT database provides estimates for the probability distribution of the change in 
binding free energy of a protein-protein interface upon making a single point mutation. 
This data has been compiled for diverse protein-protein interfaces and is described by a 
log normal distribution (for xi), with deleterious mutations being more likely than 
favorable ones. The probability distribution of binding free energy changes for antibody-
antigen interfaces may be different. Nonetheless, using this data, one can estimate p (xi). 
By discretizing the changes in xi that can occur, the value of the quantity in Eq. 2 can be 
calculated numerically. Let us estimate the value by making a very rough approximation 
– viz., replacing the log normal distribution for xi with an exponential distribution. 
Substituting an exponential distribution for p (xi) in Eq. 2 obtains: 
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where a is the number of combinations of sequential values of xi that sum to x, c 
characterizes the decay of the exponential probability distribution for xi and C1 normalizes 
this probability distribution. As M is of O (1000) and C1 is of O (1), if we take N to be equal 
to 4, O (x) is of the order of 2.4 ∗ 	10+0	𝛼	𝑝	(𝑥). The PINT database estimates that p (x), 
the probability of a random mutation resulting in a beneficial change of 7-8 Kcal/mol, is 
vanishingly small. For N being about 4, the quantity, a, is not large enough to compensate 
for the vanishingly small value of 2.4 ∗ 	10+0 p (x) because p (x) is tiny. We would reach 
the same conclusion for an affinity change of a thousand-fold or 2 divisions per cycle 
because the probability of beneficial mutations that lead to large affinity changes in just 
a few division/mutation cycles is vanishingly small. Thus, the average number of 
outcomes that lead to B cells with the large change in affinity observed during affinity 
maturation in a single round of mutation in the DZ is much less than unity. This extremely 
low chance of occurrence, the fact that multiple mutations are observed in affinity 
matured antibodies (compared to germline naïve B cells), and that antibody affinity and 
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the number of acquired mutations increase with time make it evident that multiple 
rounds of mutation and selection likely occur during affinity maturation.      

Following the seminal work by Perelson and co-workers described above, numerous 
physics-based models of AM have been studied. These models describe the dynamics of 
GC processes by employing a variety of methods that include mean-field differential 
equations, stochastic agent-based computer simulations that reflect the Master 
equations describing the dynamics of GC processes, and Fokker-Planck equations (or 
birth-death equations). Until recently, most such studies primarily focused on AM driven 
by single model antigens, which had also been the focus of most past experimental 
studies. Rather than study the details of these descriptions of AM induced by a single 
antigen, let us turn attention to a more complex situation involving AM that is pertinent 
to a practical problem – viz., developing vaccines that can elicit potent antibodies that 
protect against infection by highly mutable pathogens. In discussing this problem, we will 
also describe a few different approaches to studying the pertinent stochastic processes, 
all of which are also applicable for studying AM initiated by a single antigen. 

5.2: The evolution of antibodies that can target diverse mutant strains of pathogens 

In Chapter 5, we discussed highly mutable pathogens, with special emphasis on the 
example of HIV and how knowledge of the mutational fitness landscape of the virus could 
be obtained. We also discussed how, based on the fitness landscape, immunogens could 
be designed that may elicit vaccine-induced T cell responses that target the virus’ 
mutational vulnerabilities. Most effective prophylactic vaccines stimulate a strong 
antibody response, as antibodies can prevent infection of host cells, while T cells kill 
infected cells. To protect against infection by highly mutable pathogens, a vaccine needs 
to stimulate the immune system to produce antibodies that can neutralize diverse mutant 
strains that may infect a person. Such broadly neutralizing antibodies (or bnAbs) against 
HIV and influenza have been isolated from some patients. 
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Fig. 5.2 A is a schematic depiction of the spike on the surface of HIV, which is a non-
covalently associated trimer composed of two proteins (gp120 and gp41). The viral spike 
is an important target of antibodies upon natural infection or vaccination. The spike 
proteins of HIV are highly mutable, thus providing a moving target for the immune system 
upon natural infection with HIV. However, the HIV spike contains some relatively 
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conserved sites, and bnAbs bind to such regions. One example is the CD4 binding site, 
which is relatively conserved because it has to bind to the CD4 co-receptor on human cells 
in order to propagate infection. However, these relatively conserved receptor binding site 
(RBS) residues are surrounded by highly variable residues depicted in red in Fig. 5.2 A. Fig. 
5.2 B shows this variability of the region surrounding the conserved portion of the CD4 
binding site. The fitness cost of evolving mutations at different sites, averaged across all 
possible sequence backgrounds, is shown superimposed on a representation of the HIV 
spike trimer. The fitness cost was obtained using the fitness landscape of ENV proteins 
using methods described in Chapter 4. The typical footprint of an antibody is larger than 
the size of just the relatively conserved residues of the CD4 binding site. Furthermore, as 
shown in Fig. 5.2 A, the CD4 binding site is also shielded by glycans (sugars). A number of 
bnAbs have been isolated from HIV-infected patients that bind to the CD4 binding site. 
Other relatively conserved regions on the spike that are targeted by bnAbs are also 
depicted in Fig. 5.2 A. Importantly, upon natural infection, bnAbs are induced in only some 
people, usually several years after infection, and in relatively low titers (numbers). Most 
of the antibodies that are produced during natural infection are directed toward other 
variable epitopes on the HIV spike proteins; i.e., the immunodominant antibody 
responses are not bnAbs.  

The viral spike of influenza is also comprised of a trimer of the hemagglutinin (HA) protein 
(Fig. 5.2 C). HA binds to sialic acid on human cells to propagate infection. Neuraminidase 
(NA) is another molecule expressed on the surface of the influenza virus, and it plays roles 
in virus motion through the respiratory tract and in propagating infection. Both HA and 
NA are targets of antibodies, but most protective antibodies target HA. A domain of HA, 
called HA1, comprises the globular “head” of the spike, which is highly variable. The HA2 
domain and the termini of the HA1 domain comprise the “stem” of the spike. When HA 
binds to its target on human cells, conformational changes occur that are predicated on 
a conserved region on the stem (shown in yellow in Fig. 5.2 C). BnAbs that target this 
region have been isolated from humans; for example, during the 2009 swine flu epidemic. 
But the immunodominant antibody response upon natural infection or seasonal 
vaccination is directed toward the highly variable head epitopes. The density of spikes on 
the influenza virus surface is very high, thus making it difficult for B cells and antibodies 
to access the conserved stem epitope. This geometric constraint is likely an important 
factor contributing to the rare emergence of bnAbs. The sialic acid binding site (RBS) on 
the head of the HA spike also contains relatively conserved residues, but this region is 
surrounded by highly variable regions (like HIV’s CD4 binding site).  

While bnAbs are subdominant antibody responses upon natural infection by HIV or 
influenza, the emergence of bnAbs in some infected individuals shows that the human 
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immune system, through AM, is capable of learning how to evolve bnAbs. This raises the 
tantalizing possibility that properly designed vaccination strategies could change the 
immunodominance hierarchy and elicit bnAbs efficiently in the human population. Thus, 
there are extensive efforts being directed toward developing immunogens and 
vaccination protocols that can elicit bnAbs targeting HIV and influenza in diverse patients. 
Success would result in an effective HIV vaccine or a universal influenza vaccine that could 
protect against seasonal variants and pandemic strains. Moreover, the approaches 
developed in this regard could help design similar vaccines against other pathogens, such 
as the coronavirus family of viruses. 

Vaccination with a single variant of the viral spike will likely lead to the evolution of strain-
specific antibodies because the AM process would be subjected to a selection force that 
favors the evolution of Abs that bind to the immunodominant epitopes of this particular 
variant of the viral spike. One would likely have to vaccinate with multiple variants of the 
molecules comprising the viral spike to induce bnAbs. These variants would share a set of 
conserved sites (e.g., the RBS), but would have different variable regions. This idea is 
consistent with data on the temporal evolution of virus sequences in some HIV-infected 
patients who evolve bnAbs. The emergence of bnAbs is often preceded by a 
diversification of the viral swarm in an individual. Similarly, depending upon the history 
of past exposures to influenza strains, some individuals mounted a stem-specific response 
to the 2009 pandemic strain. This could be because past exposures to different strains led 
to low levels of antibodies directed against the conserved stem region. When exposed to 
a completely new strain that shared the conserved stem with past influenza strains but 
not the previously immunodominant regions, the stem-specific memory B cells expanded. 
Taken together, these observations suggest that the types of variant antigens to which an 
individual has been exposed in the past (history of selection forces that the B cell 
population has been subjected to) influences bnAb evolution. 

If multiple variant antigens are used in the vaccine, several practical questions need to be 
addressed. These include: What should be the variant antigens? How many variant 
antigens should be used, and how different should their variable parts be from each 
other? In what temporal order should they be administered (e.g., as a cocktail, 
sequentially, or permutations thereof)? What should be the concentrations of the variant 
antigens?  Despite significant efforts and advances aimed toward answering these 
questions, effective universal vaccines that can protect against HIV and influenza infection 
do not yet exist. An important reason is that the answers to the questions noted above 
are drawn from a large space of possibilities, which makes it difficult to intuitively design 
experiments that can search a promising space for answers. A deep mechanistic 
understanding of how AM is driven by multiple variant antigens could guide the choice of 
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answers and the design of effective immunogens and vaccination protocols that can 
change the natural immunodominance hierarchy and elicit bnAbs. Furthermore, such 
studies would provide fundamental insights into how the immune system works. 

The fundamental challenge associated with changing the natural immunodominance 
hierarchy by vaccination can be stated as follows. AM is a stochastic dynamic process that 
involves mutation and selection and is driven far from equilibrium. Can we understand 
how this process can be guided by the choice of selection forces (vaccination strategies) 
to efficiently evolve bnAbs or any desired sub-dominant response? That is, how can the 
selection forces be chosen to make normally low probability dynamic trajectories evolve 
with high probability. This is a problem at the intersection of non-equilibrium statistical 
physics, evolutionary biology, immunology and learning theory. We will study simplified 
models that provide some insights into this general problem. Some aspects of these 
models are chosen motivated by issues pertinent to the evolution of bnAbs that could 
target the HIV CD4 binding site or the RBS of HA.  

We begin by considering a highly simplified model of AM driven by multiple variant 
antigens. The insights that will emerge will then be tested against computer simulations 
of more complex models and experimental results.  

5.2.1:  A simple model of affinity maturation upon immunization with multiple variant 
antigens 

The viral spike of HIV or influenza contains far fewer BCR epitopes that contain conserved 
sites than those that do not. So, unless the frequency of naïve (or germline) B cells that 
target the conserved regions is reasonably high or their affinities for these regions is very 
high, vaccination with a form of the spike as the immunogen would likely lead to GCs 
seeded overwhelmingly by germline B cells whose receptors bind to epitopes that do not 
contain any conserved sites. The precursor frequency of germline B cells that can target 
the RBS on influenza’s HA spike is reasonable, and so may not get outcompeted if properly 
designed immunogens can be developed for a vaccine. But, in other circumstances, such 
as the CD4 RBS of the HIV spike and the conserved stem region of the influenza spike, 
only a rather restricted set of germline B cells can evolve into bnAbs. So, for example, as 
a first step in efforts to elicit bnAbs against HIV’s RBS, immunization with a simpler antigen 
(not the whole spike) has been shown to be effective in selectively activating and 
expanding germline B cells with receptors that can bind to epitopes containing the 
pertinent conserved residues. These activated germline B cells and corresponding 
antibodies are not bnAbs, but could potentially evolve to become bnAbs. Our focus will 
be on immunization with variant antigens that mimic the entire viral spike after such 
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germline B cells have been activated. That is, we will assume that only these B cells seed 
GCs upon immunization with spike-like antigens. In order to develop basic concepts and 
intuition, we will, for now, ignore the fact that upon immunization with the spike proteins 
germline B cells that target other regions could also seed GCs. At the end of this chapter, 
we will comment on such issues and their importance. 

The breadth of coverage that an antibody provides to a panel of variant antigens is 
defined by the fraction of these antigens that it can neutralize. We will use the affinity 
(free energy of binding) of the antibody for an antigen as a proxy for neutralization ability; 
i.e., neutralization corresponds to the affinity exceeding a threshold. The affinity of a BCR 
or antibody for an antigen is determined by its amino acid sequence and the 3-
dimensional conformations of the regions of the antibody and antigen that interact with 
each other. Thus, the affinity depends on many variables coupled together in complicated 
ways. Since the affinity of an antibody depends on many variables, its breadth of coverage 
for a panel of variant antigens also depends upon these variables. In the spirit of Occam’s 
razor, let us assume that the breadth of an antibody (or parent BCR) is characterized by a 
single dimension. This dimension may be thought of as a projection of the high 
dimensional space spanned by the many variables noted above on to one that defines an 
appropriate collective property that determines breadth. We will later consider more 
detailed models where affinity, or breadth, is defined by multiple variables. 

Each point on the breadth dimension described above defines a breadth state – i.e., the 
fraction of variant antigens that a BCR corresponding to that state can bind to with an 
affinity exceeding a threshold. Because the pool of B cells that seed GCs are not bnAbs, 
we expect the probability distribution describing their breadth states to be as shown in 
Fig. 5.3 A (black line).  
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The immunogens used in a vaccine impose selection forces on this population of B cells 
as it evolves during AM. We need to characterize how the selection force depends upon 
the choice of a particular variant antigen administered as the immunogen. A B cell that 
binds more strongly to an antigen will likely internalize more antigen and display more 
pMHC molecules on its surface, and thus has a higher probability of being positively 
selected compared to its peers. Since the immunogen in a shot of the vaccine is different 
from the one that activated the germline B cells, GC B cells with a higher breadth will have 
a higher probability of internalizing more antigen, and thus being positively selected. So, 
we can represent the selection force imposed on B cells by a shot of the vaccine by a 
breadth-dependent probability of being positively selected per unit time (Fig. 5.3 B). This 
probability distribution will be peaked at the highest breadth state if the vaccine 
immunogen is sufficiently different from the previously administered immunogen. It will 
be more sharply peaked around the highest breadth state if the difference between the 
first administered immunogen and the one that activated the right germline B cells is 
greater. Biochemically, this is because, if the difference is larger, the positive selection of 
B cells that exhibit stronger interactions with the shared conserved sites will be more 
strongly favored. Stronger binding to the conserved sites is likely to result in higher 
breadth. For brevity, we will refer to the probability of a B cell being positively selected 
per unit time (Fig. 5.3 B) as it’s “fitness”.   
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If a B cell mutates during AM, it’s breadth state will change. Mutations occur via discrete 
changes to the codons that represent BCR amino acids. Furthermore, it is known that 
bnAbs usually acquire many mutations compared to their ancestor germline B cells. These 
considerations suggest that the axis describing states of breadth of B cells can be 
discretized. Mutations can result in transitions between these states, but can also result 
in non-functional BCRs (e.g., misfolded ones). To represent these lethal mutations, as well 
as the fact that GC B cells are inherently apoptotic and die if not positively selected, 
mutations can also lead to transitions to a “dead” state of B cells. Let us discretize the 
breadth space into K states (Fig. 5.4). States 1 through K-1 represent different breadth 
states, with the K/2th state corresponding to the highest breadth (a bnAb) and states 1 
and K-1 correspond to the lowest breadths. State 0 corresponds to dead B cells.   

Once an immunogen is administered, the existing B cell population will seed GCs and 
evolve by mutation and selection to learn and adapt to the new environment. If 
adaptation is perfect, the probability distribution of the evolved B cells would mirror the 
fitness distribution. Cast in the language of information theory, perfect adaptation implies 
that the B cell population has acquired the maximum amount of information available 
about the environment. This maximal amount of information can be quantified as the 
Kullback-Leibler divergence (KLD) between the probability distribution of the breadth 
states characterizing the initial GC B cell population (p) and the breadth-dependent 
probability distribution for a B cell to be positively selected per unit time (the fitness 
function, f) imposed by administering the immunogen. The KLD, DKL (p||f), is a 
quantitative measure of the selection force imposed by the immunogen and corresponds 
to the distance between the two probability distributions. It is defined as follows: 
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The KLD can also be interpreted as a thermodynamic force that acts on the initial GC B 
cell population upon immunization with a particular variant antigen. This force results in 
a flux of B cells through breadth space due to the non-equilibrium process of AM, 
potentially leading to adaptation.  

There are three possible outcomes of AM: 1] If all the antigen is consumed by B cells that 
internalize antigen, AM will come to an end. B cells that internalize antigen and are then 
positively selected by T helper cells multiply. Therefore, a proxy for antigen being 
consumed is that the GC B cell population reaches a maximal size. 2] All the B cells die, 
and the population becomes extinct. 3] Antigen also decays because of various 
degradation processes, thus ending AM. For this simple model, we will consider only the 
first two possibilities as conditions that bring AM to an end. 

If the population of B cells does not go extinct during AM induced by the first administered 
immunogens (termed the prime), then a pool of memory B cells is created. The memory 
B cells are actually produced after every round of mutation and selection during AM, but 
in the spirit of Occam’s razor, let us assume that the final population of B cells in the GC 
is the memory pool. Now, if we immunize with another shot of the vaccine containing 
new variant immunogens (termed a boost), both these memory cells and B cells from the 
naïve population can potentially seed the new GCs that can form. Here we assume that 
only the memory cells seed new GCs in response to the boost. The immunogen (s) therein 
imposes a selection force on these B cells, which can again be represented as a breadth-
dependent probability of being positively selected per unit time (f2). A larger difference 
between the immunogens in the boost and prime would result in f2 being more sharply 
peaked around the K/2th bin. The thermodynamic force acting on the population of 
existing memory B cells that results in AM is again given by the KLD. In general, we can 
define the KLD for sequential rounds of immunization as follows: 

𝑫𝑲𝑳		G𝒑𝒍||𝒇𝒍8𝟏H = 	∑ 𝒑𝒊𝒍 𝐥𝐨𝐠 I
𝒑𝒊
𝒍

𝒇𝒊
𝒍%𝟏J𝑲+𝟏

𝒊$𝟏   (5) 

where 𝒑𝒍is the probability distribution characterizing the memory B cell population after 
the 𝒍𝒕𝒉 immunization and 𝒇𝒍8𝟏 is the fitness distribution imposed on these B cells by the 
immunogens in the subsequent immunization. The logistics associated with vaccinating a 
population at a reasonable cost imply that only a small number of immunizations is 
practical. Here, we will consider either two shots of different immunogens administered 
sequentially or a single shot containing a cocktail of multiple variant antigens.  
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If the vaccine is comprised of a single shot of a cocktail of multiple variant antigens, then 
the AM process will occur only once. For AM induced by a cocktail of variant antigens, we 
have to consider whether the variant antigens in the cocktail are displayed 
homogeneously on FDCs or whether the distribution is heterogeneous. If homogeneously 
distributed, every time a B cell interacts with the FDC, it encounters multiple types of 
antigens. If the distribution is highly heterogeneous, a B cell would interact with only one 
type of antigen. Experimental data does not inform us about which of these situations is 
true. The answer likely depends upon the concentration of antigens displayed on the FDC 
surface, with higher concentrations resulting in more homogeneous distributions. Let us 
consider the case where the distribution is heterogeneous first. Suppose that the variable 
regions surrounding the shared conserved region in these antigens are separated from 
each other by large mutational distances. In successive rounds of mutation and selection, 
the B cells will likely interact with different variant antigens. Since the variable regions are 
very different, after a few cycles of mutation and selection, only the ones with high 
breadth are likely to have survived. So, for immunization with such a cocktail, if we coarse 
grain time in our simple model such that each time step corresponds to AM dynamics 
over a few rounds of mutation and selection, only the B cells with high breadth will have 
a significant probability of being positively selected per unit time. This can be represented 
by a fitness distribution that is sharply peaked around the K/2th bin. If the variable regions 
of the antigens in the cocktail are more similar, this probability distribution will be less 
sharply peaked. If the variant antigens are distributed homogeneously on the FDCs, then 
since a B cell can see the same antigen in successive rounds, the probability of being 
positively selected per unit time for B cells of low breadth will be quite high. So, the fitness 
distribution will not be sharply peaked. These arguments lead to the conclusion that, for 
immunization with a cocktail, we can still use the KLD between the probability distribution 
of being positively selected and the initial distribution of breadths of the GC B cell 
population as a measure of the thermodynamic force that drives AM. We will study the 
outcome of AM induced by a cocktail of immunogens or sequentially administered variant 
immunogens as the character of the immunogens are varied; i.e, as the KLD defined 
earlier is varied. 

We now need a description of how the probability of observing B cells in different breadth 
states changes with time as AM ensues. This can be accomplished using Master equations 
that account for the probabilities of occurrence of various processes by which B cells can 
be added or removed from each breadth state, i, and the state 0. The equation that 
describes the temporal evolution of the probability that there are n B cells in any breadth 
bin, i, 𝒑𝒊	(𝒏, 𝒕), is: 
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𝒅𝒑𝒊(𝒏, 𝒕)
𝒅𝒕 = 	−	𝒑𝒊	(𝒏, 𝒕)	P𝒏	 Q𝒇𝒊 +	S𝝁𝒊𝒋

𝒊<𝒋

U +	S𝝁𝒋𝒊S𝒎	𝒑𝒋	(𝒎, 𝒕)
𝒎𝒋<𝒊

W

+	S𝝁𝒊𝒋
𝒊<𝒋

	(𝒏 + 𝟏)	𝒑𝒊	(𝒏 + 𝟏, 𝒕)

+	𝒑𝒊(𝒏 − 𝟏, 𝒕)	P(𝒏 − 𝟏)𝒇𝒊 +	S𝝁𝒋𝒊 	S𝒎	𝒑𝒋	(𝒎, 𝒕)
𝒎𝒋<𝒊

W 

          (6) 

The terms proportional to 𝒑𝒊	(𝒏, 𝒕) describe positive selection of B cells resulting in 
replication, the mutation of B cells in bin i to another bin j (at rate µij), and mutations of 
B cells from any other bin, j, to the breadth state, i (at rate µji). These stochastic processes 
reduce the probability of there being n cells in the bin corresponding to breadth state, i. 
The term proportional to 𝒑𝒊	(𝒏 + 𝟏, 𝒕) describes mutations away from bin i to any other 
bin j when there are (n+1) B cells in bin, i. This process adds to the probability of there 
being n B cells in bin, i. The terms proportional to 𝒑𝒊(𝒏 − 𝟏, 𝒕) describe positive selection 
and replication of B cells in bin, i, and mutations of a B cell in any bin, j, to a breadth state 
corresponding to bin, i. These stochastic processes increase 𝒑𝒊	(𝒏, 𝒕) because a B cell is 
added to bin, i, when it has (n – 1) B cells. The combined effects of lethal mutation and 
basal death rate of GC B cells is denoted by a rate of transition to the state 0, µi0. 
Transitions from state 0 to other states are disallowed.  

Eq. 6 is not analytically solvable. One way to solve it numerically is to obtain the 
corresponding mean-field equations that describe the temporal evolution of the average 
number of B cells in each bin, i, and then express the processes they describe in terms of 
a set of “chemical reactions”. Standard Monte-Carlo approaches, such as the Gillespie 
algorithm, can then be used to obtain stochastic evolutionary trajectories as these 
“chemical reactions” occur. To obtain the mean-field equations corresponding to Eq. 6, 
multiply both sides of the equation by n and sum over n. This obtains: 

𝒅?𝑵𝒊A
𝒅𝒕

=	−	G𝒇𝒊	 +	∑ 𝝁𝒊𝒋𝒊<𝒋 H 	< 𝑵𝒊
𝟐 >	−	< 𝑵𝒊 >	∑ 𝝁𝒋𝒊 	∑ 𝒎	𝒑𝒋	(𝒎, 𝒕)𝒎𝒋<𝒊 	+	< 𝑵𝒊

𝟐 >

		∑ 𝝁𝒊𝒋 −	< 𝑵𝒊 >	∑ 𝝁𝒊𝒋 +	𝒇𝒊 	< 𝑵𝒊
𝟐 >	𝒊<𝒋 + 𝒇𝒊 	< 𝑵𝒊 >𝒊<𝒋

+	𝑵𝒊 	∑ 𝝁𝒋𝒊𝒋<𝒊 	∑ 𝒎	𝒑𝒋	(𝒎, 𝒕)𝒎 +	∑ 𝝁𝒋𝒊𝒋<𝒊 	∑ 𝒎	𝒑𝒋	(𝒎, 𝒕)𝒎      (7) 

To obtain the equation above, one must observe that n (n + 1) = [(n + 1)2 – (n + 1)], and 
that n (n -1) = [(n-1)2 + (n – 1)]. Cancelling terms proportional to < 𝑵𝒊 >	 and < 𝑵𝒊

𝟐 > 
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with opposite signs in Eq. 7, and noting that ∑ 𝒎	𝒑𝒋	(𝒎, 𝒕)𝒎  = <Nj>, we obtain the 
following mean-field equations: 

𝒅?𝑵𝒊A
𝒅𝒕

=	G𝒇𝒊 −	∑ 𝝁𝒊𝒋𝒊<𝒋 H 	< 𝑵𝒊 > +	∑ 𝝁𝒋𝒊𝒋<𝒊  < 𝑵𝒋 >     (8) 

Eq. 8 can be interpreted as follows. B cells in any bin, i, are positively selected per unit 
time according to the fitness corresponding to that bin and its occupancy. B cells in bin, 
i, are depleted according to the rate of mutation to other bins and the occupancy of the 
bin, and B cells are added to bin, i, by mutations from other bins, j. If i = 0, the first term 
in Eq. 8 is zero. The “chemical reactions” that correspond to the processes described by 
Eq. 8 are shown in Table 5.1.  

Given a set of parameters, we can now use the Gillespie algorithm to study the effects of 
different immunization protocols by varying 𝐷DE		G𝑝"!||𝑓"!8%H. It is not possible to choose 
the precise values of parameters in our simple model to equal experimentally measured 
numbers because the model is highly coarse-grained. However, the choice of parameters 
can be guided by consistency with known phenomena. The expectation that the 
population of B cells should not be extinguished if the imposed probability of being 
positively selected per unit time (fitness) is distributed uniformly allows us to set bounds 
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on µi0. As there are K-1 discrete bins characterizing breadth space and the fitness 
distribution is normalized as it corresponds to a probability, µi0 must be less than 1/(K-1); 
otherwise, the basal death rate, rather than the fitness landscape, would principally 
dominate the outcome of GC processes. Experimental data show that bnAbs usually 
evolve several mutations compared to the germline B cells. Thus, in our coarse-grained 
representation the mutation rates, µij, must be relatively low as each mutation 
correspond to a change in breadth, which likely requires multiple actual BCR mutations. 
For the same reason, mutations between distal bins are unlikely, and we will only allow 
mutations between adjacent breadth states (bins). The probability of making breadth 
enhancing mutations should be lower than that for evolving mutations that reduce 
breadth. This is because there are fewer BCR sequences that can bind with high affinity 
to multiple variant strains compared to those that bind to just a few variant strains. For 
the results we will discuss, the values of the parameters are: K = 16; µi0 = 0.02; µ = 0.05; 
if i < K/2 µi i+1 = 0.125 µ, µi+1 I = 0.875 µ; if i > K/2, µi i+1  = 0.875 µ, µi+1 I = 0.125 µ. For 
mutations from bin, K/2, µi i+1 and µi i-1 = 0.5 µ. 

 

A population of 50 B cells is chosen from the distribution, pi
l, a fitness landscape 

corresponding to a value of 𝐷DE		G𝑝"!||𝑓"!8%H is chosen and the stochastic version of Eq. 8 
is then simulated 100 times until one of the stop conditions is reached. Each calculation 
corresponds to a particular stochastic realization of a GC process under the imposed 
conditions. For sequential immunization, 50 new B cells are chosen from the population 
of B cells in each GC that is not extinguished, and then the calculation is repeated with a 
new 𝐷DE		G𝑝"!||𝑓"!8%H corresponding to the next immunization. The total number of bnAbs 
(B cells in bin K/2) in the GCs that survive after completion of the two immunizations 
divided by the number of simulated GCs is a measure of the numbers  of resulting bnAbs. 
This number can be regarded to be the number of bnAbs produced on average in a 
vaccinated person. This is because, in any person, a number of GCs form in the lymph 
node upon vaccination or natural infection.  
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Fig. 5.5 A shows that the number of bnAbs per GC is maximized for a particular value of 
D (p0||f1) corresponding to the prime immunization. Fig. 5.5 B shows that, for each value 
of D (p0||f1), there is a value of D (p1||f2) for the boost immunization that maximizes 
bnAb production. Taken together, these results show that there is an optimal prime-
boost protocol that maximizes bnAb production. Let us parse the mechanistic origins of 
this result. 
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If the value of D (p0||f1) is not too large, the B cell population begins to learn about its 
environment by trying to adapt to the imposed selection force. Thus, after a certain time, 
trajectories collected from each GC show that the KLD between the evolving B cell 
population and f1 decreases with time (Fig. 5.6 A). When the B cell population reaches its 
maximal size, the GC reaction comes to an end and adaptation stops at a finite value of 
this KLD. A KLD value of zero would correspond to perfect adaptation. Perfect adaptation 
is not possible for small values of D (p0||f1). There is a flux toward B cells in low breadth 
states because mutations are more likely to reduce the breadth of B cells, but when D 
(p0||f1) is small, the resulting low breadth B cells still can be positively selected (Fig. 5.3 
B, curve with highest variance). So, the GCs quickly fill up with B cells, and AM ends before 
there is enough time for B cells to acquire the mutations required to increase their 
breadth. Taken together, these effects result is a state with the B cell population largely 
occupying states of low breadth (Fig. 5.7).  

Large values of D (p0||f1) corresponds to a large thermodynamic driving force. Typically, 
this should lead to fast adaptation. Fig. 5.6 B shows a few trajectories of the change in 
KLD with time when D (p0||f1) is large, and indeed adaptation is faster than when the 
imposed selective pressure to evolve breadth is small (compare Figs.5.6 A and 5.6 B). 
However, the trajectories shown in Fig. 5.6 B are very rare. When D (p0||f1) is large, the 
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B cell population in most GCs goes extinct. This is because f1 is sharply peaked (Fig. 5.3 B, 
curve with the smallest variance). So, the flux of B cells to low breadth states (because 
mutations are more likely to reduce breadth) results in B cells that have a very low 
probability of being positively selected. Thus, with high probability, the B cell population 
quickly becomes extinct. So, on average, the B cell population is very small after the prime 
(Fig. 5.7). In the few evolutionary trajectories where extinction does not occur, B cells 
rapidly acquire mutations that enhance breadth substantially. The mutated B cells then 
multiply as the probability of being positively selected is high for B cells that acquire high 
breadth. Thus, the rare evolutionary trajectories that can avoid extinction rapidly adapt 
to become bnAbs and the KLD declines substantially with time quickly (Fig. 5.6 B).  

For the optimal value of D (p0||f1), the probability of being positively selected at the edge 
states of lowest breadth is slightly below the basal probability of transitioning to the dead 
state, bin 0 (Fig. 5.8 A). But the B cells in higher breadth states have a reasonable 
probability of being positively selected. Some of these B cells can mutate to even higher 
breadth states as they replicate. This allows the flux of B cells toward higher breadth 
states and the flux toward lower breadth states due to biased mutational probabilities to 
be better balanced than when D (p0||f1) is too high. So, the B cell population does not go 
extinct with high probability. However, the replication probability of low breadth B cells 
does not compare as well with high breadth B cells as when D (p0||f1)  is too low. So, the 
B cells do not quickly multiply and fill up the GCs before B cells have time to acquire 
several breadth-enhancing mutations. For optimal D (p0||f1), AM continues for a 
relatively long time, which allows B cells to acquire the mutations necessary to enhance 
breadth. Adaptation is slower than if D (p0||f1) is higher than the optimum, but B cells in 
a far larger fraction of GCs can adapt to the new environment. Thus, after the prime, a 
significant fraction of the B cell population occupies states adjacent to the bnAb state (Fig. 
5.7). Note that there is a very sharp transition in the fraction of GCs that go extinct (Fig. 
5.8 B) if one exceeds the optimal value of D (p0||f1). This is because in this circumstance 
bins in states with breadth higher than the edge states also have a probability of being 
positively selected that is lower than the probability of transitioning to state 0 (Fig. 5.8 A).     
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Fig. 5.9 summarizes the change in the KLD from D (p0||f1) after prime for conditions 
corresponding to low, optimal, and high values of D (p0||f1). For values of D (p0||f1) that 
exceed the optimal value, except for the rare trajectories that adapt considerably, in most 
of the GCs, the B cell population becomes extinct as signaled by an increase in KLD after 
prime. The KLD increases because the B cell population loses information about the 
environment upon extinction. For low values of D (p0||f1), the decrease in KLD, or extent 
of adaptation, is less than for the optimal D (p0||f1). For the optimal value of D (p0||f1), 
the KLD decreases significantly as the B cell population adapts. A small fraction of GCs 
become extinct under optimal conditions, as evidenced by a small mode of the DD 
distribution with an increase in KLD. 
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For each value of D (p0||f1), we find that there is an optimal value of D (p1||f2) that 
maximizes bnAb production (Fig. 5.5 B). The determinants of the optimal value of D 
(p1||f2) are the same as for D (p0||f1). For distributions of f2 corresponding to lower than 
optimal D (p1||f2), B cells that are relatively far from the bnAb state have a probability of 
being positively selected that is larger than the basal death rate. They can replicate and 
the GC processes end before the mutations necessary to become bnAbs can occur with a 
sufficiently high probability. For distributions of f2 corresponding to higher than optimal 
D (p1||f2), only B cells that are very close to the bnAb state have a significant probability 
of being positively selected. As the occupancy of pre-existing B cells in these states is low, 
a small number of bnAbs evolve.  For the distribution of f2 corresponding to the optimal 
D (p1||f2), B cells further away from the bnAb state have a significant chance of being 
positively selected. But the probability of being positively selected for B cells in these 
states is lower than for distributions of f2 corresponding to sub-optimal values of D 
(p1||f2). So, for the optimal D (p1||f2), these B cells can replicate and acquire mutations 
that allow them to evolve to the bnAb state, while at the same time not replicating too 
quickly and filling up the GC with B cells that are not bnAbs. 
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The optimal prime-boost combination maximizes bnAb production because the optimal 
value of D (p0||f1) produces the right diversity of the B cell population prior to the boost 
(p1) . Fig. 5.10 shows the number of trajectories originating from different breadth states, 
i, that evolve into bnAbs for low, optimal, and high values of D (p0||f1); for each case, D 
(p1||f2) equals the corresponding optimal value. When D (p0||f1) is lower than the 
optimal value, the probability of being positively selected during the boost has to be 
sharply peaked to promote bnAb evolution. This is because most B cells occupy low 
breadth states after the prime and evolving the many mutations needed by repeated 
replication from these states is not likely. Only the few B cells that evolved relatively high 
breadth during the prime have a chance of evolving into bnAbs, and so the number of 
bnAbs after the boost is low. If D (p0||f1) is larger than the optimal, the optimal value of 
D (p1||f2) can be smaller than for sub-optimal values of D (p0||f1). This provides B cells in 
states adjacent to the bnAb state to also have some probability of evolving into bnAbs. 
But since only a few B cells survive after a supra-optimal prime (Fig. 5.7), the number of 
bnAbs produced is small. The optimal prime-boost combination enables the evolution of 
bnAbs from a wider range of B cell states following prime than for sub-optimal or supra-
optimal values of D (p0||f1). That is, the optimal prime generates the right diversity of B 
cells, which can subsequently be boosted to generate many bnAb producing evolutionary 
trajectories. 

 

 

 

 

 

 

 

Upon natural infection, bnAbs that target diverse strains of highly mutable pathogens do 
not evolve with high probability. The results of our simple model lead us to the conclusion 
that a prime-boost sequential immunization strategy can potentially be optimized by 
choosing the right variant antigens and other conditions such that rare evolutionary 
trajectories that lead to bnAbs become more likely. That is, the variant antigens employed 
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for sequential immunization can be chosen such that the immunodominance hierarchy is 
modulated to maximize bnAb production for reasons elaborated above.   

The results we have described above for the prime apply for immunization with cocktails 
comprised of immunogens with varying extents of differences between their variable 
regions. As we have noted earlier, if the B cells interact with only one type of variant 
antigen in the cocktail during each round of selection, greater differences between the 
variable regions of the variant antigens will result in more sharply peaked distributions of 
the probability of getting positively selected per unit time (larger values of KLD).  Our 
simple model predicts that there is an optimal cocktail of antigens separated by a specific 
average mutational distance corresponding to the optimal value of KLD (Fig. 5.5A). Finally, 
we note that, if B cells can see all types of variant antigens in a cocktail during each round 
of selection, the KLD is small, and bnAbs are unlikely to evolve. Biologically, this is 
because, if a B cell can interact with one of the variants in every round of mutation and 
selection, there is no driving force to evolve breadth. A diverse set of B cells each with a 
different specificity is likely to evolve.   

In the next sections, we will explore whether computer simulations with more complex 
models support these findings, and what experiments have to say.  

5.2.2: Computer simulations of more complex models 

The affinity, and therefore breadth, of a BCR/antibody for a panel of variant antigens is 
defined by multiple features of its sequence and structure. It is not clear how to 
determine an appropriate one-dimensional projection that defines breadth. Therefore, 
the first step toward testing the veracity of the findings described in the previous section 
is to examine whether a higher-dimensional model for BCR-antigen affinity yields similar 
results. In this section and the next, we will consider two such models. It is important to 
note that these models are also highly simplified, and many details of processes that occur 
in the GC are ignored. Hopefully, these simple models still provide insights into the 
general mechanistic principles that we seek. 

Simulations with a “string model” 

In one model, both the sites of the antigen’s epitope and the BCR sites that interact with 
them (called paratope) are described as strings of amino acids (Fig. 5.11).  
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The CD4 binding site epitope on the HIV spike or the receptor binding site of the influenza 
virus is comprised of some relatively conserved sites and variable ones that surround it. 
A simple caricature of such an epitope is to model the antigen as a string of N “spins” 
characterized by a variable sk for each site, k, which can take values equal to ±	1.  There 
are M variable sites with sk = -1 corresponding to a “mutated” variable site, and the rest 
of the are the conserved sites (sk is always equal to +1).  We can write the interaction free 
energy, Eij, between strings of amino acids representing a BCR paratope, i, and an 
antigen’s epitope, j, as: 

𝐸"F =	∑ ℎG" 𝑠G
F 	+ 	∑ ℎG" 		#

G$H8%
H
G$%    (9) 

The set, {ℎG" }, is a representation of the interaction characteristics of BCR amino acids at 
the sites that comprise its paratope. For example, if hydrophobicity was the only metric 
of the strength of interaction of an amino acid with other amino acids, ℎG" , would be a 
measure of the hydrophobicity of the amino acid at residue, k, of the BCR, i. We will use 
a convention wherein larger values of E correspond to higher affinity. As a concrete 
example, we will study variant antigens with 28 variable sites (M = 28) and 18 conserved 
sites (N = 46 in Eq. 9).  

The values of ℎG" 	can change as the BCR sequence mutates during AM. One could choose 
the values of ℎG"  to also be ±	1, but then the interaction free energy would vary rather 
abruptly upon BCR mutation. As large beneficial single point mutations are rare (see 
section 5.1), we choose the values of ℎG"  from a continuous distribution. Unlike TCR-
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peptide interactions that we studied in Chapter 3, BCR (or antibody) interactions with 
antigenic epitopes depends on the 3-dimensional conformations of the interacting pair. 
A string model is clearly not a good representation of how conformations of molecules 
might influence interaction free energies, and Eq. 9 will be embellished below to take 
some conformational effects into account.  

We can simulate the stochastic dynamics of AM for the model described above on a 
computer, by numerically solving the Master equations corresponding to B cell dynamics 
during AM. One way to do this is to develop a stochastic simulation method that executes 
a set of rules that describe AM. The following rules are a simple representation of the key 
aspects of AM. 

The GC reaction is seeded with a few B cells that bind to the immunogen with a free 
energy that exceeds a threshold value (Ea). The value of Ea was chosen to be 9kBT for the 
results we will discuss, but its specific value does not matter for this simple model as it 
just serves as a reference or scale for all other values of free energies. As before, we will 
study AM following immunization with complex antigens after a simpler antigen has 
activated the germline B cells that can bind to epitopes that contain the conserved sites. 
So for the B cells that seed a GC, the values of the fields, ℎG" , corresponding to interactions 
with the conserved sites of the antigen’s epitope are drawn from a distribution that 
reflects favorable binding to them; viz., a uniform distribution that spans positive values 
(between 0.3 and 0.6). The values ℎG"  for the BCR amino acids that interact with the 
variable sites are drawn from a broader uniform distribution, ranging from -0.18 to 0.9. 
The specific ranges of these values are chosen for numerical convenience. 

The GC is seeded with 10 germline B cells, which expand for a few divisions before 
replication-dependent mutations due to the action of AID turns on. Seeding GCs with 
larger numbers of B cells does not affect the qualitative results that we discuss. Consistent 
with experimental data, B cells divide twice per GC cycle. Mutations occur at all sites of 
the BCR with a uniform probability chosen in accord with experiments (~ 0.1 per BCR 
sequence per division). This is an approximation as AID acts more effectively on certain 
sequence motifs, and so the mutation probabilities are not uniform across the BCR sites. 
It is estimated that the probability of occurrence of lethal mutations is 0.5 (the B cell is 
removed from the simulation), silent mutations is 0.3 (no change in the values of ℎG"  upon 
mutation), and affinity affecting mutations is 0.2.  

Affinity affecting mutations are more likely to decrease, rather than increase, affinity. The 
reason is similar to that which we noted in the preceding sub-section for mutations that 
affect breadth. A catalog of measurements of changes in the the affinity of protein-
protein interfaces due to mutations is available (the PINT database), and this data can be 



 160 

fit to a lognormal distribution with advantageous mutations being less likely. In the 
simulation results we discuss, for a B cell with affinity affecting mutations, the change in 
its binding free energy to the antigen’s epitope (∆𝐸) is chosen from the following 
distribution: 

Δ𝐸 = 	𝜀 − exp(𝜇 + 	𝜎𝑟)	  (10) 

In Eq. 10, r is a normal distribution with mean zero and standard deviation equal to one. 
The values of the parameters, e, µ, and s, are chosen such that the tail of the log normal 
distribution fits the experimental data reported in the PINT database, and only 5 % of the 
mutations lead to an increase in Δ𝐸. The specific values of the parameters thus obtained 
are: µ = 1.9, s = 0.5, and e = 3 kBT. The values of Δ𝐸 are also bounded to lie within a range 
(± 1 kBT) for reasons noted below. 

Once a value of Δ𝐸 is chosen, the value of ℎG"  corresponding to a randomly picked BCR 

site, k, is changed to ℎG" +	∆ℎG" , with ∆𝐸 = ∆ℎG" 	𝑠G
F. Because mutations can change the 

range of BCR affinities beyond that characterizing the B cells that seed a GC, the allowed 
range of values of ℎG"  is expanded to span – 1.0 to +1.5. The specific ranges of these values 
are chosen for numerical convenience. For example, if the range is too wide, the evolution 
of a single mutation with a large value of h can dominate the results. If residue k on the 
BCR that was randomly chosen to undergo an affinity change contacts a conserved site, 
no other affinity changes occur.  

Changes in the variable regions surrounding the conserved sites of the CD4 binding site 
on the HIV spike can lead to loops, which serve as steric barriers for a BCR (or antibody) 
to bind to the conserved sites. BCR mutations that can avoid interactions with such loops 
would be able to access and bind to the conserved sites more easily. Inspired by this 
example, let us assume that if a mutation occurs in a BCR site, x, that reduces its 
interaction with a variable site on the antigen (smaller value of ℎ-), then the value of ℎI 
for a randomly chosen BCR site, y, that interacts with a conserved site is increased. This 
mimics the effect of enhanced access of the BCR to the conserved sites if the BCR is better 
able to avoid interactions with loops that present a steric barrier. Conversely, if a 
mutation occurs in a BCR site that increases its interaction with a variable site on the 
antigen, then the value of ℎI corresponding to a randomly chosen BCR site that interacts 
with a conserved antigen site is decreased. The change in interaction free energy with the 
conserved residue is taken to be -a Δ𝐸, where a is a factor that reflects the degree of 
conformational steric screening and Δ𝐸 is the change in interaction free energy with the 
variable site due to BCR mutation (Eq. 10). In the results we describe here, a was chosen 
to be 0.25. 
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B cells must internalize antigen in order to be positively selected. When the B cell 
membrane imposes a pulling force, if the antigen-FDC bond breaks rather than the BCR-
antigen bond, antigen is internalized (see Chapter 2). This process can be explicitly 
modeled to calculate the number of antigens internalized. In a coarse-grained treatment, 
we can model affinity-dependent antigen internalization in a simpler way by assuming 
that the probability with which antigen is internalized grows with the affinity of the BCR 
for the antigen and then saturates as per a Langmuir-like function: 

𝑃F" =	
J'	K

((*"'+*,)

%8	J'	K
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   (11) 

where 𝑃F"  is the probability that B cell i is successful in internalizing antigen, j,	𝑐F 	is the 
antigen concentration on the FDC, 𝐸"F  is the interaction free energy for B cell, i, interacting 
with antigen, j (Eq. 9), and r is a parameter with units of (kBT)-1 whose meaning is 
discussed below. There is experimental evidence that GC B cells in the LZ can make a few 
attempts, separated by refractory periods, to internalize antigen. If the B cell is not 
positively selected in a few attempts, apoptosis occurs. The few attempts to be positively 
selected have been coarse-grained into one set of probabilities in Eq. 11. 

B cells that succeed in internalizing antigen display antigen-derived pMHC molecules on 
their surface. These B cells compete with each other to interact with helper T cells, and 
receive a survival signal if a productive interaction occurs. This requires that a B cell 
encounters a T helper cell whose TCR is specific for a peptide-MHC molecule displayed on 
its surface. Depending upon the question one seeks to answer, these and other complex 
effects may need to be accounted for at different levels of detail. For our search for 
qualitative mechanistic insights here, let us employ the simplest model. The B cells that 
successfully internalize antigen are ordered according to their affinities for the antigen, 
and B cells in the top fraction, Fs, are positively selected. This simple model is justified by 
noting that B cells with BCR that have a higher affinity for the antigen are more likely to 
internalize more antigen, and so display more peptide-MHC molecules on their surface 
and will be more likely to interact productively with T helper cells. 

As discussed earlier, a fraction of the B cells that are positively selected in the LZ (Fr) are 
recycled for further rounds of mutation and selection. The rest exit the GC as antibody 
producing plasma cells and memory cells. GC processes end when one of three conditions 
discussed earlier is satisfied: 1] all GC B cells die; 2] a threshold number of B cells is 
reached (chosen to be ~ 5000 B cells); 3] a maximum time has elapsed (chosen to be 200 
GC cycles), which reflects antigen decay from FDC surfaces.  
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Computer simulations of the agent-based model described above provide stochastic 
trajectories, and the B cells remaining in the GC in the end are collected. For each 
immunization protocol studied, the typical properties of these B cells are obtained by 
simulating many GCs (1000 for the results we describe below) and averaging the value of 
a property across the B cells in all these GCs. As discussed in section 6.2.1, such averages 
can be considered representative of the outcome for a typical person. The principal 
property of interest to us is whether bnAbs evolve, and in what numbers. When 
experimentalists measure the breadth of an antibody, they determine the ability of an 
antibody to prevent (neutralize) infection of target cells by a virus, in vitro. Different 
variant strains of the virus are used, and the breadth of an antibody is the fraction of these 
strains it can neutralize. The relationship between the ability of an antibody to 
“neutralize” a virus and its affinity for an antigenic epitope is complex. Our simulations 
only allow us to compute affinities. So, we calculate the fraction of virus variants to which 
an antibody can bind with an affinity above a threshold and use this quantity as a proxy 
for breadth.   

The affinity of the B cells that remain in the GC at the end of a simulation to a set of variant 
antigens different from the ones used in the immunogens is calculated using Eq. 9.  The 
variant antigens share the conserved sites, but the identities of their variable sites are 
chosen to be ±	1 with equal probability. The threshold affinity that serves as a proxy for 
neutralization was chosen to be 12 kBT. Given the other parameters, choosing this value 
of the threshold led to B cells with low breadth upon immunization with a single antigen. 
This is consistent with the observation that upon natural infection bnAbs do not evolve 
quickly. Using 100 or 1000 variant antigens produced the same results for breadth. We 
can calculate the average number of B cells in a GC (across 1000 simulations) with a 
breadth of coverage above 0.8 and use this quantity as a proxy for bnAb titers/GC. Using 
values different from 0.8 do not alter qualitative results if the number is sufficiently high. 

In the simulation results discussed below, the values of Fs, Fr, r, and d were chosen to be 
0.7, 0.7, 0.08 (𝑘L𝑇)+% , and 1, respectively, to ensure that the simulation results are 
consistent with observations of GC dynamics upon administering a single antigen (without 
prior germline targeting). Specifically, these parameter values made the simulation 
results consistent with the following results: 1] About 10 mutations resulting in a roughly 
1000-fold increase in affinity occurs after AM is complete; 2] After the initial period of 
multiplication, the GC population declines, then plateaus, and then rises again relatively 
rapidly.       
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We are now ready to discuss the results of the computer simulations and compare them 
to the simple one-dimensional model considered earlier. Let us first consider what 
happens upon immunization with variant antigens that differ from the germline targeting 
antigen by different mutational distances. Fig. 5.12 shows that bnAb titers are found to 
be maximal for an intermediate mutational distance, a result analogous to that shown in 
Fig. 5.5 A with respect to the KLD, D (p0||f1). Simulations using the string model also show 
that the reasons underlying the optimum are the same as that revealed by the simple 
model. For small mutational distances, the GCs fill up quickly with B cells that have 
undergone very few mutations, and hence exhibit very low breadth (Fig. 5.13). For too 
high a mutational distance, most GCs are extinguished, and so the bnAb titers are low. 
Indeed, Fig. 5.14 shows that, just as for the simple model, the optimal value of the 
mutational distance corresponds to the condition when GC extinction begins to rise 
sharply (see Fig. 5.8 B for comparison). 
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Next, let us ask what happens when a second immunogen is administered. As in the 
calculation with the simple model, the new GCs are seeded by cells taken from the pool 
of memory cells that evolved during affinity maturation induced by the first immunogen. 
In reality, naïve B cells can also seed GCs, and some may not even target an epitope 
containing the conserved sites. Here, we ignore this potentially significant complexity and 
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seed the second GC with 10 memory cells from the pool that was produced during affinity 
maturation.  

Fig. 5.15 shows the bnAb titers/GC that are produced as a function of the mutational 
distance (d2) separating the variable regions of the second and first immunogens. The 
quantity, d2, is analogous to D (p1||f2) in the simple model we considered earlier. As in 
Fig. 5.5 B, we see that for each value of d1 (analog of D (p0||f1)), there is an optimal value 
of d2. So, consistent with the simplified model, the more detailed simulations also show 
that there is an optimal combination of prime and boost that maximizes the probability 
of realizing evolutionary trajectories that produce bnAbs. As we saw with the simplified 
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model, the optimal prime produces the right kind of diversity, resulting in many possible 
evolutionary trajectories that produce bnAbs upon boosting (Fig. 5.16). The results in Fig. 
5.16 are shown as a function of three different antigen concentrations during the prime, 
for a fixed mutational distance between the first immunogen and the germline targeting 
immunogen. As Eq. 11 shows, the selection force can be modulated by changes in the 
mutational distance or the concentration. A high concentration of antigen during the 
prime allows most B cells to be positively selected and the GC reaction quickly comes to 
an end, while a sufficiently low concentration leads to GC extinction. So, the sharpness of 
the fitness distribution (Fig. 5.3 B) and DKL can be modulated by either mutational distance 
or antigen concentration. Like the optimal mutational distance, the optimal concentration 
leads to the desired outcome. 

For sequential immunization with variant antigens, the results obtained using the simple 
model that we developed to search for general principles are consistent with those 
obtained using a more detailed model. Let us next consider what happens when we 
immunize with a cocktail of immunogens in one shot, a situation also described by the 
simple model. For this purpose, we will illustrate the use of another representation for 
the free energies describing BCR-antigen interactions that has proven to be useful in 
different contexts. 

Simulations with a “shape space” model 

The model for BCR-antigen interactions we will use to study immunization with an antigen 
cocktail was introduced by Perelson and Oster and is called the shape space model. The 
basic idea is that interaction free energy between antibodies/BCR and antigens depends 
upon a few coarse-grained degrees of freedom, such as charge, polarity, hydrophobicity 
and shapes of the interacting regions. The values that each of these features could acquire 
can be represented on different axes (Fig. 5.17).  
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The space spanned by the axes is labeled “shape space”. A particular BCR or antigen is 
defined by specific values of each of the features important for interactions, and thus is a 
point in this abstract shape space. In this model, the shorter the distance between a BCR 
and an antigen, the larger (more favorable) their interaction free energy. Note that, in 
some instances, this implies that a particular axis may represent complementary features 
of the BCR and the antigen. For example, if a feature represents charge, an axis in shape 
space will define how positively charged the interaction region of a BCR is. The same axis 
will represent how negatively charged the corresponding region on the antigen is. As long 
as such mappings defining complementary axes for BCR-antigen interactions exist, shape 
space is a useful abstract representation for the corresponding free energies (E), which 
can be written as: 

𝐸 = 	 %
#.
	 |𝑟 −	 �⃗�|0  (12) 

where Nd is the number of dimensions, or axes, that defines shape space, and �⃗� and �⃗� are 
the positions of the BCR/antibody and antigen in shape space, respectively. The 
equilibrium constant of association (Ka) can be defined as: 

𝐾M = exp(−(𝐸 −	𝐸M)/𝑘L𝑇)     (13) 
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Ea is a reference free energy and E = 0, corresponds to the strongest possible interaction 
between a BCR and an antigen. The value of Ka can increase by a 1000-fold or more during 
AM driven by a single antigen. If we choose the value of Ea to be 8kBT and consider it to 
be the threshold value of interaction free energy required for B cells to seed a GC, a 
roughly 3000-fold increase in Ka becomes possible.    

We wish to study a cocktail of variant antigens that share conserved residues but have 
different variable regions. We can consider shape space to be comprised of Nv axes that 
define the features of the variable regions of the antigens, and Nc axes that define the 
features of the common conserved regions (Nd = Nv + Nc). It is convenient to choose the 
shared conserved residues to be at the origin, and the positions of the variable regions of 
different variant antigens on each of the Nv axes to be drawn from independent Gaussian 
distributions. That is, the probability of a variant antigen being located at a position, �⃗�, in 
shape space is: 

𝑃	(�⃗�) = 	∏ 𝜙	(𝑎" , 0, 𝜎N)	∏ 𝛿	(𝑎F
#/
F$% )	#0

"$%    (14) 

𝜙	(𝑎" , 0, 𝜎N) is a Gaussian function with zero mean and variance,	𝜎N, that represents the 
positions of each coordinate, ai, describing the features of the variable regions, 𝛿	(𝑎F) is 
the Kroenecker delta function denoting that all antigen coordinates, aj, corresponding to 
the conserved residues are located at the origins of their respective axes. Using a Gaussian 
function to represent the positions of the variable regions of the variant antigens implies 
that, if a particular BCR is perfectly matched with a particular antigen’s variable residues 
(E = 0), then its interaction free energy with another antigen’s variable regions will differ 
by a typical value, Ev, which equals: 

O0
D1P

=	 %
#.
	〈|�⃗�|0〉 = 	 #0

#.
	𝜎N0   (15) 

We expect that the difference between the interaction free energies of a BCR with two 
variant antigens will be larger if the mutational distance between their variable regions is 
larger. So, given Eq. 15, the value of 𝜎N0 is a measure of the mutational distances between 
the variable regions of variant antigens. We will vary 𝜎N0 to study the effects of 
immunization with a cocktail of variant antigens that differ in their variable regions to 
different extents.   

During affinity maturation, the BCRs mutate, and this can be represented by a random 
displacement of a particular BCR in shape space.  

𝑟Q8% =	𝑟Q + 	Δ𝑟	  (16) 
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	where 𝑟Q8% is the position of the BCR in consideration after mutation, 𝑟Q is its position 
before mutation, and Δ𝑟 is the random displacement, which can be chosen (for simplicity) 
to be drawn from a Gaussian distribution with zero mean and variance, 𝜎R; i.e.,  

𝑃	(Δ𝑟) = 	∏ 𝜙	(Δ𝑟" , 0, 𝜎R)
#.
"$%    (17) 

where 𝜙 is a Gaussian distribution. 

The representation of mutations and free energies of interaction described above has the 
pleasing feature that the average change in a BCR’s interaction free energy with a given 
antigen upon BCR mutation is positive – i.e., changes in free energy of binding are more 
likely to be deleterious, rather than beneficial, consistent with expectations and 
experiments. This is because the average change in free energy of binding with a 
particular antigen upon BCR mutation, < ∆𝐸R >, is given by: 

?∆O2A
G1P

=	 %
#.
〈|𝑟222⃗ Q8% −	�⃗�|0 −	|𝑟222⃗ Q −	�⃗�|0〉 = 	 %

#.
	 〈|Δ𝑟|0〉	~	𝜎R0 > 0  (18) 

With this model in place, we can now carry out affinity maturation simulations following 
the steps described earlier for simulations using the string model, but now with cocktails 
of different variant antigens separated by varying mutational distances (	𝜎N). The results 
described below are for Nc = Nv = 4, the number of antigens in the cocktail can vary, and 
so can the antigen concentration. The antigens are distributed in shape space according 
to Eq. 14. The seeding B cells are chosen to lie on a hypersphere centered around the 

origin that has a radius of t8𝑁T; i.e., the founder B cells bind to an antigen at the origin 
with a binding free energy of Ea = 8 kBT. As we have noted earlier, when considering a 
cocktail of antigens, two extreme situations can be envisaged: the B cells interact with 
only one type of variant antigen during each round of mutation and selection, or they 
interact with all types of variants. To account for both these possibilities, Eq. 11 for the 
probability of a B cell internalizing antigen can be modified to read as follows: 

𝑃M" =	
∑ J'	K
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    (19) 

The sum runs over all the variant antigens in the cocktail only if all types of variant 
antigens can interact with B cells during each round of mutation and selection, otherwise 
only the antigen, j, that interacts with the B cell is considered.  

After every round of selection, 5 % of the positively selected B cells with an affinity of at 
least 4 kBT for one of the variant antigens is removed and considered to have become an 
antibody-secreting plasma cell. A threshold is applied because there is some evidence 
(although not certain) that the B cells with higher affinity BCRs differentiate into plasma 
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cells. This condition was not applied for the simulations carried out using the string model. 
The qualitative mechanistic insights are not different if we change this threshold, and as 
we shall see the results are consistent with those described using our simple model 
(section 6.2.1). Multiple rounds of mutation and selection ensue until one of the stop 
conditions noted in the preceding section is met.  

To determine the breadth of the antibodies generated for each simulated condition, a 
panel of variant antigens is generated using Eqs. 14. The mutational distance between the 
variant antigens used in this panel can be different from that used in the immunization 
cocktail. For the results shown, the mutational distance between variant antigens in the 
panel was chosen such that Ev (Eq. 15) was equal to 2 kBT, and 104 variants were used to 
assess breadth. Choosing a different level of diversity characterizing the variant antigens 
in the panel used to assess breadth does not change qualitative results. By running many 
simulations for each simulated condition, the average breadth of the antibodies was 
determined using 105 antibodies generated during the GC reaction.     

Let us first consider the situation wherein, during any one round of selection, a B cell 
interacts with only one type of randomly chosen variant antigen. As we have argued 
earlier, a cocktail with variant antigens separated by larger (smaller) mutational distances 
corresponds to a larger (smaller) KLD in our simple model (section 5.2.1). Consistent with 
the results of this model, the results obtained using the shape space model show that 
there is an optimal value of 𝜎N0 (Fig. 5.18 A).  

The mechanistic reason for this optimum is as we described earlier. Consider a B cell that 
is positively selected upon interacting with a particular variant antigen in one round of 
selection. During the early stages of affinity maturation, the affinity of the B cells for the 
variant antigens is not high, and so it is unlikely that strong interactions with the 
conserved residues shared by the variant antigens have evolved. Therefore, if the average 
mutational distance separating the antigens in the cocktail is large (large 𝜎N0), the affinity 
of this B cell for another variant antigen is likely to be weak. Consequently, if in the next 
round of selection this B cell interacts with a different variant antigen, the probability of 
being positively selected is small. Indeed, simulations using the shape space model show 
that GC extinction occurs with high probability in this situation. If the average mutational 
distance separating the variant antigens is small (small 𝜎N0), then a B cell’s probability of 
being positively selected in successive rounds of mutation and selection is large, and the 
GC quickly fills up with B cells that have not acquired the mutations required to achieve 
high breadth. The optimal value of 𝜎N0 provides the right balance for the GC processes to 
continue for a sufficiently long time to acquire several mutations without a high 
probability of GC extinction. 
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If the mutational distance between the variant antigens is fixed and the number of variant 
antigens changes, an optimal number of variant antigens maximizes breadth (Fig. 5.18 B). 
If there is only one antigen, then strain specific antibodies will be produced by affinity 
maturation. If there are many variant antigens, the probability of encountering the same 
antigen in successive rounds is low and GC extinction occurs with high probability. For the 
optimal number of variant antigens, the selection force for binding to the shared 
conserved residues of the antigens can act on the B cell population without a high 
probability of GC extinction (i.e., it corresponds to an optimal KLD). Finally, as we noted 
for the results obtained using the string model, antigen concentration can also change 
the KLD. Thus, one can also optimize the performance of a cocktail immunogen with a 
fixed number of antigens separated by a fixed average mutational distance by changing 
antigen concentration. 

 

Now, let us consider the situation where all types of variant antigens are encountered at 
the B cell-FDC synapse in every round of selection. In this case, B cells can be positively 
selected by the same variant antigen during every round of mutation and selection, and 
so a population of strain-specific B cells exhibiting low breadth will emerge. Indeed, this 
is what the simulation results show (Fig. 5.18 B). As noted earlier, GC B cells attempt to 
be positively selected a few times with refractory periods separating these attempts; our 
coarse-grained models for the probability of internalizing antigen (Eqs. 11 or 19) 
represent an average over these attempts. If there are very few variant antigens in a 
cocktail, it is possible that, even if in any one attempt a B cell interacts with only one 
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variant antigen, overall all types of variant antigens are available during every round of 
selection. In such a scenario, bnAbs will be unlikely to evolve. 

The results discussed for cocktail immunization suggest that evolutionary trajectories that 
result in bnAbs can be made more likely by optimizing the number of variant antigens, 
their concentrations, or the mutational distances that separate them. However, how 
exactly to tune these variables finely in the design of a vaccine is difficult to say. Sequential 
immunization seems to offer an easier path to optimizing bnAb production. Also, results 
obtained using the string model show that, using the same variant antigens, sequential 
immunization is more likely to result in bnAbs than immunization with a cocktail 
containing the same antigens. 

5.3: Experiments and outlook 

Many studies have been carried out to trace the evolutionary paths that led to bnAbs 
upon HIV infection in humans. Antibodies obtained from temporally ordered clinical 
samples were sequenced and thus the evolution of the lineage of B cells that evolved to 
bnAbs as well as the corresponding germline precursor were inferred. Immunogens have 
been designed that can activate germline B cells that can potentially evolve to bnAbs. 
Experiments aimed toward eliciting bnAbs by vaccination in animal models have also been 
reported for HIV and influenza antigens. Here, we briefly discuss some studies that are 
directly pertinent to the topics and mechanisms discussed in this chapter, and those that 
point out some of the complexities that we have not considered.  

GP120 is one of the two proteins that constitutes the trimeric viral spike of HIV and 
contains the CD4 receptor binding site. Mutations were introduced into the surface 
residues of a modified form of the GP120 monomer to obtain 4 variant immunogens 
which shared the conserved CD4 binding site. Note that these immunogens are not 
variants of an intact trimeric spike. Therefore, immunization with these immunogens 
cannot result in antibodies that can neutralize the actual virus. But one can ask whether 
cross-reactive antibodies that focus their binding on the shared conserved residues could 
be elicited upon immunization with these variant antigens. One group of mice was 
immunized every two weeks sequentially with each of the four immunogens, while 
another received a cocktail of the same immunogens four times. A third group of mice 
was immunized with one of the variant immunogens, which served as a control as this 
protocol is not expected to elicit cross-reactive antibodies.  
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Fig. 5.19 shows data from representative mice from each group. Serum (blood) from a 
mouse is progressively diluted (so that it contains fewer antibodies), and the antibodies 
that bind to an antigen are measured at each dilution level using a fluorescence assay. 
The antibodies generated upon sequential immunization bind to the four variant antigens 
with affinities that are more similar to each other compared to antibodies generated upon 
immunization with a cocktail of antigens (compare Figs. 5.19 A and B). Moreover, 
comparing Figs. 5.19 B and C shows that the distribution of antibody binding affinities for 
the four variant antigens for mice immunized with a single immunogen and a cocktail of 
four variants is similar. These data suggest that mice immunized sequentially with variant 
antigens are more likely to result in cross-reactive antibodies than those immunized with 
a cocktail. Our theoretical/computational predictions are consistent with this result. In 
the experiments with the cocktail, we do not see a dearth of antibodies, which would be 
true if there was massive GC extinction. This is because if the antigen concentration is 
high enough, the FDCs likely display the variant antigens homogeneously. In this 
circumstance, the theoretical prediction is that strain-specific antibodies would evolve 
(see earlier discussion), and indeed that is what the data shows. 

Do the cross-reactive antibodies produced by sequential immunization focus their binding 
on the shared conserved residues of the variant antigens? To address this question, the 
following experiment was performed. VRCO1 is a potent bnAb isolated from humans that 
binds to the conserved CD4 binding site. This antibody was displayed on yeast, and GP120 
was then added. GP120 is expected to bind to VRCO1 via its CD4 binding site, which would 
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thus be occupied. If antibodies added now can bind to GP120, it implies that they do not 
bind to the conserved CD4 binding site. As Fig. 5.20 shows, the antibodies in serum from 
mice immunized sequentially with the four variant antigens do not bind much, while 
antibodies obtained from mice immunized with a cocktail or a single variant do bind. 
These data show that, consistent with theoretical expectations, mice immunized 
sequentially with variant antigens are more likely to evolve cross-reactive antibodies that 
focus their binding footprint to the shared conserved residues.  

 

Other studies using more realistic antigens have also shown that sequential immunization 
can lead to cross-reactive antibodies in animal models. We briefly summarize one such 
study here. PGT121 is a potent bnAb that neutralizes diverse strains of HIV, and its 
germline precursor has been inferred. Engineered mice were generated in which a form 
of this germline precursor was expressed in the majority of its B cells. The heavy chain of 
the precursor was that of the fully mature PGT121 bnAb but the light chain has to evolve 
multiple mutations that are important for PGT121’s activity. Like the germline precursor 
of PGT121, the germline B cells in the engineered mice did not bind to a mimic of the HIV 
spike. So, as noted earlier, a germline targeting immunogen has to be designed to activate 
these B cells. A germline targeting immunogen was designed that achieved this goal. The 
activated cells and associated antibodies did not exhibit high breadth (like in our simple 
model, Fig. 5.3A). The engineered mice were sequentially immunized with HIV spike 
antigens that represent intermediates between the germline targeting antigen and the 
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real HIV spike. Finally, they were immunized with a cocktail of variants of the HIV spike. 
The sera from most immunized mice were cross-reactive to various HIV strains. However, 
the generated antibodies exhibited lower breadth than PGT121. These antibodies evolved 
many mutations compared to the germline sequences, and monoclonal antibodies 
isolated from the sera exhibited a broad range of breadth of coverage. Overall, the results 
showed that sequential immunization with variant antigens led to progress toward 
evolution of bnAbs in engineered mice. 

Note that in the models that we studied in this chapter the antigens that we considered 
after the germline B cells were activated were variants of the full HIV spike. This is why 
the fitness landscape was chosen to be peaked at the highest breadth state. In the 
experiments with the engineered mice that we just described the sequentially 
administered antigens were intermediates between the germline targeting antigen and 
the full HIV spike. Thus, the peak of the fitness landscape shifts from lower breadth states 
to the bnAb state upon sequential immunization with these antigens. The models we 
studied can be generalized to consider this case.    

There is currently very limited data from experiments that systematically probe whether 
sequential vaccination protocols can be optimized by the choice of variant antigens to 
maximize evolution of cross-reactive antibodies or bnAbs. However, there is some 
evidence that an optimal cocktail of antigens may promote the evolution of bnAbs upon 
natural infection. Typically, upon natural infection bnAbs have been observed to evolve 
upon sequential interactions with different strains of the virus. However, some studies 
suggest that bnAbs emerge during natural infection when the immune system is exposed 
to a swarm (or cocktail) of viral strains that are neither too different nor too similar. Such 
a situation can arise upon infection with more than one viral strain either at the same 
time or spaced by a short time interval. Usually only one strain of the HIV virus establishes 
infection and such an infection with multiple strains is rare. We briefly describe one study 
where such a situation was realized. In this study an individual evolved bnAbs after being 
infected with two viruses. Recombination between these two strains led to the evolution 
of two types of virus lineages. The resulting viral strains had closely related spike 
sequences, but not as closely related as the viral strains that evolve after typical infection 
with a single strain. The latter situation typically does not lead to bnAb evolution. These 
data suggest that perhaps an optimal difference between variant antigens administered 
as a cocktail may promote bnAb evolution, as predicted by the results from our models 
(Figs. 5.5 and 5.18). 

In the models we have discussed in this chapter, we assumed that only the memory cells 
produced after one immunization enter GCs upon exposure to another variant antigen. 
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While memory cells can enter newly formed GCs, recent mouse experiments suggest that 
mostly naïve cells enter such secondary GCs upon re-exposure to antigen. Understanding 
how the balance of naïve cells versus memory cells entering GCs influences the humoral 
immune response is an important problem. This is especially true in light of findings on 
the way in which previous exposure to an antigen influences the recall response upon re-
exposure to the same antigen. Studies in mice as well as humans sequentially vaccinated 
with multiple shots of the identical sequence of the SARS-CoV-2 spike proteins have made 
vivid the importance of feedback loops that influence the recall response. Upon re-
exposure to the same antigen, memory cells generated upon previous exposure to 
antigen are rapidly expanded outside GCs. Higher affinity memory cells are selectively 
expanded by processes very similar to those that occur in GCs except that there is little 
mutation. The majority of these expanded memory cells then differentiate into short-
lived plasma cells that rapidly secrete antibodies. This leads to the first wave of antibodies 
produced during the recall response to confer protection. 

Upon first exposure to a new antigen, circulating generic IgM antibodies bind to the 
antigen and form immune complexes that are deposited on FDCs. These antigens 
displayed on FDCs drive GC processes. Soluble antigen decays quite rapidly (a few days in 
monkeys), and so the amount of antigen that these weakly binding antibodies can bind 
and deposit on FDCs before antigen decays is small. Thus, germline B cells that bind to 
their epitopes with higher affinity or larger precursor frequencies are more likely to enter 
GCs and outcompete those germlines that bind to epitopes with lower affinity or are less 
prevalent. That is, immunodominant responses are more likely to emerge after the first 
exposure to antigen and sub-dominant responses are muted.  

Upon re-exposure to the same antigen secondary GCs form. The antibodies produced 
during the first response and those that are rapidly produced outside GCs upon re-
exposure are specific for the antigen. Thus, they can bind to and deposit far more antigen 
on FDCs. The availability of more antigen can promote the entry of naïve cells into 
secondary GCs that target epitopes with lower affinity, and they can also compete better 
in GCs with B cells that target the immunodominant epitopes. Thus, sub-dominant 
responses are promoted in secondary GCs. Sub-dominant responses are further amplified 
by the fact that antibodies targeting the immunodominant epitopes produced during the 
first antigen exposure or from expansion of memory cells outside GCs upon re-exposure 
to antigen can enter secondary GCs. These antibodies bind to their epitopes thereby 
lowering their effective availability in secondary GCs. This effect, called epitope masking, 
further promotes the evolution of sub-dominant responses as their epitopes are not 
masked. Thus, repeated boosting with the same antigen can promote a more diverse 
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antibody response due to the feedback loops described above. The effects of these 
feedback loops on the humoral immune response needs far more study. For example, 
their effects in the responses that emerge after sequential immunization with variant 
antigens that share a conserved immunodominant epitope needs further exploration.  

Many other variables influence the immunodominance hierarchy of the humoral 
response.  For example, consider sequential immunization in a context pertinent to 
eliciting bnAbs that target the conserved stem epitope of the HA spike on the influenza 
virus. As mentioned earlier, this epitope is normally not targeted significantly upon 
natural infection and targeting this region effectively by vaccination requires that the 
natural immunodominance hierarchy be altered. One reason that this epitope is sub-
dominant is that the geometry of the HA spike and its high density on the influenza virus 
sterically shields this epitope, in contrast to the exposed variable epitopes on the HA head 
that are immunodominant. BnAbs that target the conserved stem epitope also evolve 
from germline B cells that use a specific heavy chain gene. The frequency of occurrence 
of such germline B cells in humans is 0.14 %. Therefore, to investigate how vaccination 
protocols can be designed to maximize the probability of evolutionary trajectories that 
result in stem-targeting influenza bnAbs, we have to consider the role of antigen 
geometry, and germline precursor frequency and affinity on GC reactions.  

Other variables that can affect immunodominance hierarchies during GC reactions are 
also being explored. The effects of the relative stringency of selection by T helper cells 
and delivering the vaccine dose in a temporal pattern rather than just a bolus of antigen 
are just two examples.  

The duration over which memory is maintained for effective protection varies greatly for 
infection with different pathogens and immunization with different vaccines. The factors 
and mechanisms that control the period over which memory of a past exposure to a 
pathogen or vaccine immunogen is maintained are not well-understood. This 
fundamental question is of obvious practical import.  

In this chapter, we have also not considered how antibody responses change over time 
upon infection with a highly mutable pathogen that evolves to evade immune responses. 
This is an interesting problem as, for a persistent infection like HIV, the antibody response 
and the virus population co-evolve in an arms race within an individual. A similar arms 
race plays out at the population level for acute infections as exemplified by the 
emergence of new influenza and SARS-CoV-2 strains that evade population-level immune 
responses generated during past exposures. 
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We have also not considered how stochastic models of affinity maturation can be 
combined with atomistically detailed representations of the BCR-antigen binding free 
energies. Large data sets on antibody-antigen binding affinities are beginning to be 
generated and machine learning approaches are being applied with the goal of generating 
predictive models of binding free energies. Studies that combine these models with 
stochastic models of processes inside and outside GCs may allow accurate predictions of 
the humoral immune response to specific infections or vaccine antigens. These, and many 
other issues concerning the evolution of antibodies upon natural infection or vaccination, 
and how these processes can be modulated, are exciting opportunities to explore at the 
intersection of statistical physics, immunology, and evolutionary biology. Close 
collaborations between physical and life scientists in exploring these issues are likely to 
yield fundamentally new insights into immunology, which will also help enhance human 
health and well-being. 
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CHAPTER 6 

Intracellular signaling in lymphocytes 

6.1: Introduction 


