
4 Emergence

While it is tempting to focus on individual molecules, such as hemoglobin, or combinations
of a few molecules, as in the case of motor–microtubule–ATP, or transcription factor–DNA,
it is clear that the complexity of an organism or a cell cannot be fully captured from such
a perspective. If limited to one role per protein, the roughly 30,000 Human genes would
have limited utility. The key to diversity of behavior is (i) the combinatorial power from
many genes acting in concert; (ii) the time profile of expressing and suppressing genes, (iii)
localization/compartmentalization of proteins in different locations, and (iv) interactions
with the resources and stimuli from the environment. Various forms of behavior can then
emerge from a palette of few elements.

Faced with the complexity of emergent phenomena, one approach is to focus on the
elements, say picking out individual molecules and studying their properties, and possibly
interactions with a few other molecules, in great detail. While undoubtedly important, this
is akin to study of human history through biographies of important individuals– certainly
illuminating, but with the risk of losing sight of the forest for its trees. It certainly becomes
more difficult to obtain the same level of complete understanding upon increasing the number
of interacting components. Even for simple point particles in classical mechanics there
is no general (deterministic) solution for three bodies; simple orbits become chaotic and
unpredictable at long times. However, this is no reason to despair as statistical mechanics
teaches us that such complexity can actually be helpful, provided that the deterministic
perspective is abandoned for a probabilistic one. Thus while we cannot follow the trajectories
of particles in a gas, we can quite accurately account for emergent properties, such as the
pressure and temperature of the gas, and how their spatio-temporal variations lead to passage
of sound waves. Indeed one of the lessons of statistical physics is that many macroscopic
properties of the gas are independent of its constituent molecules. It is tempting to apply
similar reasoning to emergent phenomena in life sciences, and there are such attempts, as in
the case of cellular automata models for evolution and life. One has to be careful with such
approaches as the constituents are far more complex than point particles, and their number is
(relatively) much smaller. For example, one can legitimately wonder how the course of history
would be modified if Newton and Watson changed place. What the productive medium is
between including more details of individual constituents, and focusing on collective behavior
of many simplified ingredients, is not clear-cut. We shall focus on examples of the latter,
starting with descriptions of networks.

4.1 Networks

The primary elements of a network are its nodes. These can be a set of genes or proteins
in the cell, the interconnected neurons of the brain, or organisms in an ecosystem. Links
between nodes indicate a direct interaction, for example between proteins that bind, neurons
connected by synapses, or organisms in a predator/prey relationship. In its most basic form,
the network can be represented by nodes i = 1, 2, · · · , N as points of a graph, and links
Lij as edges between pairs of points. Excluding self-connections, the maximal number of
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possible links is N(N − 1) with directed connections (e.g. as in a predator/prey relation),
and N(N − 1)/2 for undirected links (as in binding proteins). A subgraph is a portion of the
total network, say with n nodes and l links. Some types of subgraphs have specific names;
e.g. a cycle is a path starting and ending at the same node, while a tree is a branching
structure without cycles.

4.2 The random graph

Analyzing biological data from the perspective of networks has gained interest recently.
Much is known about the interplay of proteins that control expression of genes, the connec-
tions of the few hundred neurons in the roundworm C. elegans, and many other examples.
One possible route to extracting information from such data is to look for specific motifs,
subgroups of several nodes, that can cooperate in simple functions (e.g. a feedforward loop).
A particular motif can be significant if it appears more (or less) frequently than expected.
We thus need a simple model whose expectations can be compared with biological data.
Random graphs, introduced by Erdös and Rényi, serve this purpose. The model consists of
N nodes, with any pair connected at random and independently, with probability p. We
shall explore several features of Erdös-Rényi networks in the following sections.

As an exploration into the significance of motifs, we can consider the expected number
of subgraphs of n nodes and l links. Note that a subgraph may be part of a larger connected
graph, and as such

N (n, l) =

(

N
n

)

× pl × n!

(symmetry factors)
, (4.1)

is obtained as a product of the number of ways of picking n points, N !/n!(N − n)!, and
connecting them with l links, pl, and a final factor that accounts for the number of ways of
connecting the points into the desired graph. For example, there are n!/2 ways to string n
points along a straight line with l = (n − 1) links; the division by 2 due to equivalency of
the two orientations. The expected number of such linear pathways is thus

N (n in a line) =
N !

(N − n)!

pn−1

2
. (4.2)

For a cycle of n nodes and l = n links there is an additional equivalency of n for shifting
(rotating) a pattern of labels, and hence the expected number of cycles is

N (n in a cycle) =
N !

(N − n)!

pn

2n
. (4.3)

All n! permutations of labels on a complete graph– in which any pair of nodes is connected
by a link, i.e. l = n(n− 1)/2– are equivalent, and thus

N (n in complete graph) =
N !

(N − n)!n!
pn(n−1)/2 . (4.4)
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From the perspective of statistical physics, it is tempting to explore the limit N → ∞,
in which case Eq. (4.1) behaves as

N (n, l) ≃ Nnpl

n!(symmetry factors)
. (4.5)

If p ∝ 1/Nx, a finite limit is obtained for x = n/l. In the following, we shall focus on the
limit x = 1 (or p ∝ 1/N); in this limit the number of links is p ·N(N−1)/2 ≃ N(pN)/2, and
the average number of links per site is a finite number pN ≡ 〈k〉. Following the reasoning
above, it can be seen that in this case the number of cycles is asymptotically 〈k〉n /(2n),i.e.
independent of N , while the number of complete subgraphs vanishes as N → ∞ for n ≥ 4.
The most common subgraphs in this limit are trees (with no loops) whose number is extensive
(proportional to N).

4.2.1 Percolation

A network can display two very distinct forms of global connectivity: (i) With few connec-
tions amongst nodes, there will be many disjoint clusters, with their typical size (but not
necessarily number) increasing with the number of connections. (ii) At high connectivity
there will be one very large cluster, and potentially a number of smaller clusters. In the
limit of N → ∞, with p(N) ∝ 1/N . a well defined percolation transition separates the two
regimes in the random graph, as the probability p is varied.

Above the percolation transition, the number of nodes M in the largest cluster also goes
to infinity, proportionately to the number of nodes, such that there is a finite percolation
probability

P (p) = lim
N→∞

M

N
= Probability to belong to the infinite cluster.

For the random graph P (p) can be calculated from a self-consistency argument: Take a
particular site and consider the probability that it is not connected to the infinite cluster.
This is the case if none of the (N − 1) edges emanating from this site connect it to the large
cluster. A particular edge connects to the giant cluster with probability pP (p) (that the
edge exists and that the adjoining site is on the large cluster), and hence

1− P (p) = (prob. of no connections via any edge)N−1

= (1− pP )N−1 . (4.6)

There is a phase transition in the limit N → ∞, provided that p → 0, such that

p(N − 1) = 〈k〉 , (4.7)

where 〈k〉, the number of expected edges per node, is finite. In this limit, we can re-express
Eq. (4.6) as

1− P = e−〈k〉P , ⇒ P = 1− e−〈k〉P . (4.8)
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The above equation can be solved self-consistently, for example graphically. For 〈k〉 ≤ 1,
the only solution is P = 0, while for 〈k〉 > 1 a finite P solution also exists, indicating the
appearance of an infinite cluster. Close to the percolation transition at 〈k〉c = 1, P is small
and we can expand Eq. (4.8) as

P = 〈k〉P − 〈k〉2
2

P 2 +O(P 3) , ⇒ P ≈ 2 (〈k〉 − 1)

〈k〉2
≈ 2 (〈k〉 − 1) . (4.9)

4.2.2 Distance, Diameter, & Degree Distribution

There are potentially several ways to travel along links from a node i to another node j.
The distance between any pair of nodes is defined as the number of edges along the shortest
path between the nodes. For the entire network, we can define a diameter as the largest of
all distances between pairs of nodes.

Distances to a particular node can be obtained efficiently by the following simple (burn
and move) algorithm. Consider a connected cluster of the random graph with 〈k〉 > 1.
(Distances cannot be defined to disconnected clusters.) In the first step, label the nodes
connected to the starting point as d = 1, and then remove this node from the network.
The number of sites thus labelled d = 1 from a starting point in the cluster will be around
p(N − 1) = 〈k〉. In the second step identify all sites connected to the set labeled before
(and thus at d = 2), and then remove all sites with d = 1 from the cluster. From each site

4



with d = 1, there are on average 〈k〉 − 1 newly accessible sites (discounting the connection
from the original site). There are thus around 〈k〉 (〈k〉 − 1) sites labelled with d = 2. This
burn and move process can be repeated, with Np / 〈k〉 (〈k〉 − 1)p−1 sites tagged at distance
d = p. (Note that at each step this overestimates the number of sites by ignoring connections
leading to sites already removed.) The procedure has to be stopped when all sites belonging
to the cluster have been removed, i.e. for

〈k〉 (〈k〉 − 1)D−1 ' N , ⇒ D '
ln (N/ 〈k〉)
ln (〈k〉 − 1)

, (4.10)

where D is a rough measure of the diameter of the network. The estimate should actually be
quite good, as in the limit considered the leading graphs are trees, and the chance of coming
back to an already visited site is small. There is also the expected increase in diameter on
approaching the percolation threshold as 〈k〉 → 1.

Note that the diameter of a random network is quite small, justifying the popular lore of
“six degrees of separation.” In a population of a few billion, with each individual knowing a
few thousand, Eq. (4.10) in fact predicts a distance of three or four between any two. Clearly
segregation by geographical and social barriers increases this distance. The model of “small
world networks” considers mostly segregated communities, but shows that even a small
fraction of random links is sufficient to reintroduce a logarithmic behavior ala Eq. (4.10).

Another quantity of interest is the degree distribution for the probability pk that there are
exactly k links emanating from a site. Since there are a total of (N−1) potential connections
from a site, in a random graph the probability that k such links are active is given by the
binomial expression

pk =

(

N − 1
k

)

pk(1− p)N−1−k . (4.11)

Taking the limits N → ∞ and p → 0 with pN = 〈k〉 as before, we obtain

pk =
Nk

k!

pk

(1− p)k
(1− p)N−1

=
〈k〉k
k!

e−〈k〉 , (4.12)

i.e. a Poisson distribution with mean 〈k〉. The above results for random graphs can be used as
a potential model for assessing significance of putative anomalies in the degree distributions
of social and biological networks.

4.3 The Barabasi-Albert model

While examining a variety of networks, initially in the context of internet, Barabasi and
Albert obtained degree distributions that were quite different from Poisson. Rather than the
exponential behavior of Eq. (4.12) they observed a tendency for distributions to fall more
slowly for large k, approximately as a power law 1/k3. To explain this observation, they
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noted that networks such as internet are obtained through a dynamic growth process, with
new nodes added to a pre-existing network. They postulated that newly added nodes are
more likely to link to popular pre-existing nodes, the latter thus becoming even more popular
(the rich become richer) over time.

Consider an algorithm in which nodes are added to the network one at a time. Each
new node makes exactly m links, but the probability that a link is made to a pre-existing
node is proportional to the number of links already emanating from that node. Starting
with a few nodes (N0) and links (L0), after a large number t of steps, the network will have
N(t) = N0 + t ≈ t nodes, and L(t) = L0 +mt ≈ mt links. A particular realization of this
algorithm can be described by the set {Nk(t)} of the numbers of nodes with k links. After
the next node is added, these numbers change, such that

Nk(t+ 1) = Nk(t)

+ # of nodes with (k − 1) edges connected to the new node

−# of nodes with k edges connected to the new node

+ δm,k . (4.13)

The rule for preferential attachment states that the (properly normalized) probability of
attachment to a site with k links is k/(

∑

k′ k
′Nk′). Since there are m new links to be added,

Eq. (4.13) implies that on average

〈Nk(t + 1)〉 = 〈Nk(t)〉+〈Nk−1(t)〉·
k − 1

∑

k′ k
′Nk′(t)

·m−〈Nk(t)〉·
k

∑

k′ k
′Nk′(t)

·m+δm,k . (4.14)

For large t, we hypothesize that the system evolves towards fixed probabilities pk for finding
nodes with k edges, such that

lim
t≫1

Nk(t) = N(t)pk = tpk . (4.15)

Substituting Eq. (4.15) into Eq. (4.14), and noting that
∑

k′ k
′Nk′(t) = 2L(t) = 2mt, gives

(t + 1)pk = tpk + pk−1
k − 1

2
− pk

k

2
+ δm,k . (4.16)

We see that terms involving t cancel out, justifying our assumption of a large t behavior as
in Eq. (4.15), and yielding a recursion relation for the probabilities, as

(

1 +
k

2

)

pk =

(

k − 1

2

)

pk−1 + δm,k . (4.17)

For k > m, successive recursions give

pk =
k − 1

k + 2
pk−1 =

(k − 1)(k − 2)

(k + 2)(k + 1)
pk−2 = · · ·

=
(k − 1)(k − 2) · · ·m

(k + 2)(k + 1) · · · (m+ 3)
pm =

(m+ 2)(m+ 1)m

(k + 2)(k + 1)k
pm .
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For k = m, the addition to probability is not from pk−1 but from the new nodes, and thus

(

1 +
m

2

)

pm = 1 , ⇒ pm =
2

m+ 2
. (4.18)

We thus find the final distribution

pk =
2m(m+ 1)

k(k + 1)(k + 2)
, (4.19)

which is properly normalized as
∑

k pk = 1. (At large time, pk = 0 for k < m.) The k ≫ 1
the tail of this distribution indeed decays as k−3, as empirically observed for the internet
and a number of other networks.
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