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Protein-protein Interactions

      Yeast two-hybrid assay: 
Does a protein A interact with B ?

 A  A

Doesn’t active  
transcription 

Doesn’t bind 
DNA Activate transcription 

and grow on -his media



Large scale yeast two-hybrid assay: 
   Find pairs of interacting proteins

A comprehensive two-hybrid analysis to explore  
the yeast protein interactome.  
Ito T et al, PNAS 2001 
A comprehensive analysis of protein-protein  
interactions in S. cerevisiae.  
P. Uetz et al, Nature 2000

Protein-protein Interactions



• proteins m=4000  
interactions n=6500

Protein-protein Interactions
2001



Baker’s yeast:  
9000 interactions 
3000 proteins 
(combined, 2006)
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Agreement between 
databases

Figure 5. Pairwise agreement between databases for yeast-only and human-only co-citations. Shown is a pictorial summary of
the agreement levels between pairs of databases for shared publications, where both databases annotated all the interactions
reported in the shared publication to the same organism. The thickness of the edge connecting two databases is proportional to
the fraction of the total number of shared (co-cited) publications contributed by the database pair. The edge color indicates the
value of the average Sorensen–Dice similarity coefficient according to the color scale shown at the bottom (shades of orange for
agreement on less than half of the interactions or proteins, shades of blue for agreement on more than half of interactions or
proteins). (a) Fraction of co-citations and agreement on interactions (SPPI) for human-only co-citations. (b) Fraction of co-citations
and agreement on proteins (SProt) for human-only co-citations. (c) Fraction of co-citations and agreement on interactions (SPPI) for
yeast-only co-citations. (d) Fractions of co-citation and agreement on proteins (SProt) for yeast-only co-citations. The Human-only
data set is dominated by co-citations from BioGRID and HPRD, whereas the overlap in yeast-only citations is contributed more
evenly by most databases except MINT. The levels of agreement are markedly improved, compared to those observed in all
co-citations, before and after the canonicalization of splice isoforms (Supplementary Figure S1). The agreement on proteins is
overall better that the agreement on interactions for each database pair. Persistent differences are found in co-annotations
involving CORUM (22), which annotates mammalian complexes: the average Sorensen–Dice similarity score for CORUM and
any other source database is below 0.5, primarily due to different representations of complexes (Supplementary Discussion
S1). Green nodes correspond to IMEx databases (DIP, IntAct, MINT). Although their agreement levels are somewhat higher
than average for human-only co-citations, they represent only 1% of all human-only and 3.7% of all yeast-only co-citations
analyzed here. Additional details are provided in the Supplementary Tables S3 and S4.
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Literature curation of protein interaction data faces a number of challenges. Although curators increasingly adhere to

standard data representations, the data that various databases actually record from the same published information may

differ significantly. Some of the reasons underlying these differences are well known, but their global impact on the

interactions collectively curated by major public databases has not been evaluated. Here we quantify the agreement

between curated interactions from 15471 publications shared across nine major public databases. Results show that on

average, two databases fully agree on 42% of the interactions and 62% of the proteins curated from the same publication.

Furthermore, a sizable fraction of the measured differences can be attributed to divergent assignments of organism or

splice isoforms, different organism focus and alternative representations of multi-protein complexes. Our findings highlight

the impact of divergent curation policies across databases, and should be relevant to both curators and data consumers

interested in analyzing protein-interaction data generated by the scientific community.

Database URL: http://wodaklab.org/iRefWeb
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Introduction
A myriad of cellular processes are carried out by groups

of physically interacting proteins, or complexes, and the

function of individual proteins often depends on their

interaction partners. Substantial efforts are therefore

being devoted worldwide to experimentally characterizing

protein–protein interactions (PPIs) (1–9). This has in turn

prompted the development of a number of specialized

databases that curate and archive PPI data from the scien-

tific literature and make them available to the scientific

community (10).

Major PPI databases created in recent years such as HPRD

(11), BioGRID (12) and IntAct (13), represent essentially

independent annotation efforts driven by different re-

search interests, and contain as a result complementary as

well as redundant information. But exactly how much in-

formation is shared by the different databases and how

much is unique, is generally not well documented, because

comparing and integrating PPI information across the data-

bases remains a challenging undertaking. The different

databases apply different rules for capturing the data and

often use different systems for cross-referencing genes and

proteins across biological databases. Curation of the same
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Abstract Prokaryotic transcriptional networks possess a large
number of regulatory modules that formally implement many
of the logic gates that are typical of digital, Boolean circuits.
Yet, natural regulatory elements appear most often compressed
and exaggeratedly context-dependent for any reliable circuit
engineering barely comparable to electronic counterparts. To
overcome this impasse, we argue that designing new functions
with biological parts requires (i) the recognition of logic gates
not yet assigned but surely present in the meta-genome, (ii) the
orthogonalization and disambiguation of natural regulatory
modules and (iii) the development of ways to tackle the connec-
tivity and the definition of boundaries between minimal biological
components.
! 2008 Federation of European Biochemical Societies. Pub-
lished by Elsevier B.V. All rights reserved.

Keywords: Digital circuit; Logic gate; Catabolic regulator;
Metagenome; Orthogonalization

1. Introduction

One of the trademarks of Synthetic Biology is the rational
combination of regulatory modules in artificial circuits for per-
forming non-natural tasks, including complex binary compu-
tation operations based on logic gates [1,2]. The basis of
such an endeavour is the implicit adoption of the metaphor
of the cell as a sort of Turing machine. In this way, physico-
chemical environmental signals (the inputs) activate an existing
gene expression program (encoded in the DNA), which is ulti-
mately executed by transcriptional regulators on promoters
and then by the downstream protein expression machinery
[3]. This results, e.g. in changes of the cell metabolism through
the increase or decrease of the production rate of specific pro-
teins (the output). Under this conceptual frame, the program
behind any biological function could in principle be de-con-
structed into minimal operative units, called by many biologi-
cal parts (see http://parts.mit.edu [1]). Such units can then
ideally be re-assembled following a rational blueprint to per-
form a different program, resulting in altogether new proper-
ties and behaviours. In this respect, Synthetic Biology clearly
takes off from what since the late 1970s was called Genetic
Engineering, as it brings into Biology robust engineering prin-
ciples such as abstraction, hierarchical design, modularization

and definition of systems boundaries – rather than vague anal-
ogies to cutting and pasting DNA sequences. In this mini-re-
view, we briefly assess what is actually available for
designing genetic circuits, how to upgrade natural modules
to meet the requirements of robust engineering, and where to
find the pieces that are still missing. Furthermore, we raise
the questions of connectivity and evolvability of biological
modules as two of the major bottlenecks that hinder the devel-
opment of synthetic biological circuitry.

2. De-constructing naturally-occurring genetic circuits into
usable regulatory elements

The principal actors of the biological input/output functions
are the cis-(promoters) and the trans-regulatory elements
(transcriptional regulators). Prokaryotic transcriptional
factors (TFs) drive the activity of their cognate promoter(s)
in response to one or more environmental stimuli. TFs can
generally be activators by enhancing the binding or the activity
of the RNA polymerase (RNAP) in the cognate promoters, or
repressors by blocking this binding, or both [4]. Most known
prokaryotic activators bind the upstream region of a promoter
in response to a signal (for example, a substrate of the meta-
bolic pathway regulated by the TF) and enhance the recruit-
ment of the RNAP to the site. Alternatively, they may
promote the escape and further progression of the transcrip-
tion machinery from the promoter into the transcribed DNA
sequence [5]. In contrast, transcriptional repressors typically
interfere with the binding of RNAP to the !35 and !10
DNA hexamers of bacterial promoters. In this case, environ-
mental stimuli decrease the affinity of the TF for its binding
site, thereby allowing the RNAP to access the promoter and
proceed with transcription [6,7]. One question relevant to cir-
cuit design emerges now: why activators and repressors instead
of just one mechanism or the other? Sometimes the very same
biological function (for instance, the ara systems for arabinose
consumption) is positively regulated in one bacterium (E. coli,
activated by AraC [8]) and negatively controlled in another (B.
subtillis, repressed by AraR [9]). There is not an easy answer to
this. It seems that activators generally produce more transcrip-
tional output than repressors [10]. It is also likely that positive
regulation allows a higher connectivity of the corresponding
promoter to physiological co-regulation [11].

2.1. Prokaryotic promoters as Boolean logic gates
The participation of one or more TFs in the regulation of a

given promoter confers the system the ability of integrating

*Corresponding author. Fax: +34 91 585 45 06.
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different input signals in a fashion not unlike those described
by the gates of Boolean logic. Such gates perform operations
on one or more inputs and produce each time a single logic
output. Since the output is also a logic-level value, an output
of one logic gate can connect to the input of one or more other
logic gates. The logic thereby performed is thus adequate for
the functioning of digital circuits. Logic gates are typically
implemented electronically using diodes or transistors but, as
discussed below, can they also be constructed using inter alia
promoters and regulators. An archetypical example in this
context is the lac operon of E. coli, where expression of the
genes for lactose metabolism is controlled by the lacI repressor
and by the cyclic AMP receptor protein (CRP) activator. The
LacI repressor binds to the lac promoter (Plac) as a tetramer
and inhibits gene expression both through the physical occupa-
tion of the RNAP binding site and through the formation of a
DNA loop [12]. The binding of the inducer (lactose or IPTG)
to LacI triggers a conformational switch in the tetramer that
decreases the affinity to the operator sequences and thus allows
transcription initiation from the Plac [12,13]. The behaviour of
the lac regulatory system has been described to be an interme-
diate between AND-gate and OR-gate logic function (see be-
low; [14]).
Although binary logic circuits are based on functions with

just two possible states (0 or 1), existing biological systems typi-
cally display continuous values for the input/output functions
[15]. In addition, such values are submitted to noise and cell-
to-cell stochastic variations due to the nature of the molecular
interactions involved [16]. This has important consequences
for the construction of artificial genetic circuits based in the
naturally occurring transcriptional modules and its applicabil-
ity in synthetic networks [17]. For example, an artificial system
with oscillatory properties constructed by the combination of
the repressor properties of three well characterized TFs (LacI,
TetR and the k repressor), lost its periodicity after a few
rounds of oscillation [18]. Although promoters destined for
building artificial circuits should ideally behave as bi-stable
switches resembling a digital response, this is not the case in
most available instances. Whether or not naturally occurring
promoters can be artificially re-designed to achieve perma-
nently such a binary performance remains an open question,
as Darwinian selection may eventually press against such a
conduct.

2.2. Simple logic gates shape the bulk of transcriptional
regulation circuits

Despite the constraints mentioned above, representing the
reactions and interactions involved in gene expression control
using circuit diagrams and Boolean logic operators is still an
useful abstraction. As the biological reactions adopt somewhat
continuous values, the 0/1 states are generally agreed to reflect
low/high states for the input status and off/on for output pro-
moter activity. Figs. 1 and 2 summarize the most relevant logic
gates that have been either described experimentally or sug-
gested to occur on the basis of simulations using empirical
data. The schemes of Figs. 1 and 2 do not cover all possible
combinations of regulatory modules that can originate the di-
verse gates shown, but they illustrate each case with a simpli-
fied biological example.
The two simplest logic gates that describe biological func-

tions include one promoter regulated by one activator or by
one repressor. In the first case we have the so-called buffer-gate

or amplifier-gate, where the output has the same state that the
input (i.e., if the input is low the output is off and vice-versa,
Fig. 1A). For a repressor, the system is represented as a
NOT-gate, where the promoter is active (on) only in the
absence of the repressor (the low state, Fig. 1B). The graphical
difference between these two gates is the presence of an invert-
ing bubble on the output terminal of the NOT-gate.
For the systems where two inputs are computed to generate

one output, there are 16 possibilities of Boolean logic gates (2n,
where n = 4 combinations of input states) [19]. However, there
seems to be only eight biologically relevant gates, as analyzed
previously [2]. The AND-gate represents a regulatory system

Fig. 1. Models of logic gates built with prokaryotic regulatory
modules. The sketches on top of the figure symbolize the various
actors that control promoter activity: RNA polymerase (RNAP)
disclosed in its various subunits, transcription factors (activators and/
or repressors), binding DNA sites and types of interaction. Each of the
gate models are assembled by combination of TFs binding sites
(operators) and RNAP binding sites (promoters). The overlapping of
one operator with a promoter causes repression while operators placed
upstream from the promoter causes activation. (a) The amplifier-gate
is represented as a simple activation process. (b) The NOT-gate is
equivalent to transcriptional repression. (c) The AND-gate can be
implemented as a TF that depends on an inducer B to activate the
promoter. (d) The OR-gate could be a promoter amenable to full
activation by two independent TFs. (e) One NAND-gate is generated
by a promoter regulated by two cooperative repressors. (f) An ANDN-
gate can be created with a promoter activated by a TF and repressed
by another.
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Human Gene Coexpression Landscape: Confident
Network Derived from Tissue Transcriptomic Profiles
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Abstract

Background: Analysis of gene expression data using genome-wide microarrays is a technique often used in genomic
studies to find coexpression patterns and locate groups of co-transcribed genes. However, most studies done at global
‘‘omic’’ scale are not focused on human samples and when they correspond to human very often include heterogeneous
datasets, mixing normal with disease-altered samples. Moreover, the technical noise present in genome-wide expression
microarrays is another well reported problem that many times is not addressed with robust statistical methods, and the
estimation of errors in the data is not provided.

Methodology/Principal Findings: Human genome-wide expression data from a controlled set of normal-healthy tissues is
used to build a confident human gene coexpression network avoiding both pathological and technical noise. To achieve
this we describe a new method that combines several statistical and computational strategies: robust normalization and
expression signal calculation; correlation coefficients obtained by parametric and non-parametric methods; random cross-
validations; and estimation of the statistical accuracy and coverage of the data. All these methods provide a series of
coexpression datasets where the level of error is measured and can be tuned. To define the errors, the rates of true positives
are calculated by assignment to biological pathways. The results provide a confident human gene coexpression network
that includes 3327 gene-nodes and 15841 coexpression-links and a comparative analysis shows good improvement over
previously published datasets. Further functional analysis of a subset core network, validated by two independent methods,
shows coherent biological modules that share common transcription factors. The network reveals a map of coexpression
clusters organized in well defined functional constellations. Two major regions in this network correspond to genes
involved in nuclear and mitochondrial metabolism and investigations on their functional assignment indicate that more
than 60% are house-keeping and essential genes. The network displays new non-described gene associations and it allows
the placement in a functional context of some unknown non-assigned genes based on their interactions with known gene
families.

Conclusions/Significance: The identification of stable and reliable human gene to gene coexpression networks is essential
to unravel the interactions and functional correlations between human genes at an omic scale. This work contributes to this
aim, and we are making available for the scientific community the validated human gene coexpression networks obtained,
to allow further analyses on the network or on some specific gene associations. The data are available free online at http://
bioinfow.dep.usal.es/coexpression/.
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Introduction

Exploration and analysis of gene expression data using genome-
wide microarrays is a technique often used in genomic studies to
find coexpression patterns and locate groups of co-transcribed
genes. This kind of studies has been used in model organisms, like
yeast [1], to discover gene functions, to define biological processes
and to find related transcription factors and their products. The
main features of expression patterns that give a wide utility in
bioinformatic studies are: the functional information associated
[2], the high conservation of gene coexpression groups along
evolution [3] and the high correlation of these groups with
biomolecular pathways or reactions [4]. All these features leverage

genome-wide expression profiling, and convert this topic in a hot
research area.
Despite the described interest, coexpression studies done at

global ‘‘omic’’ scale are not focused in many cases on human
samples [5], and, when they correspond to human, very often they
include heterogeneous datasets, mixing ‘‘normal’’ samples with
‘‘disease altered’’ samples from patients suffering from some kind
of pathological state. This is the case, for example, in several
human gene expression large studies [2,6]. The inclusion of many
disease datasets (mainly from cancer) in such meta-analyses may
introduce strong bias and produce a lot of biological noise in the
results. In fact, it is well known that cancer cells have altered
genomes. Therefore, these kind of studies cannot be used to clarify

PLoS ONE | www.plosone.org 1 December 2008 | Volume 3 | Issue 12 | e3911
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it’s not a random graph!
Andreas Wagner  
Mol. Biol. Evol. 18(7):1283–1292. 2001



it’s not a random graph!

Wagner MBE 2000



it’s not a random graph!

IT’S ALMOST SCALE-FREE (=POWER-LAW) GRAPH



Random vs power-law
Barabasi A et.al. Nature:411(2001)    
Wagner A Mol Biol Evol:18(2001) 

Random



Other power-law networks
Barabasi A et.al. Nature:411(2001)

Other power-law networks: 

• Metabolic network 

• Network of social interactions:  
scientific collaborations, actors in films 

• The Internet: 
links, physical connections





Random vs power-law
Barabasi A et.al. Nature:411(2001)    
Wagner A Mol Biol Evol:18(2001) 

The network of protein-protein interactions  
(and other molecular biological networks)  
are scale-free networks! 

                        WHY? 

• Scale-free networks are “better”… 

           OR/AND 

• Biological networks became scale-free due to 

  evolution.



    Random       Power-law
• Removal of a randomly 

picked node significantly 
increases   
the average path."

• All nodes are of equal 
“importance”.

• Removal of a random 
node slightly increases the 
average path."

• Removal of a highly-
connected node leads to 
drastic increase of the 
average path!

POWER-LAW NETWORKS 
"
• Tolerant to random “attacks”, 
• But more sensitive to targeted  attacks!

Let's check it 



Figure 2 Changes in the diameter d of the network as a function of the 
fraction f of the removed nodes. a, Comparison between the 
exponential (E) and scale-free (SF) network models, each containing N 
= 10,000 nodes and 20,000 links (that is, k = 4). 



Figure 3 Network fragmentation under random failures and attacks. The relative size of 
the largest cluster S (open symbols) and the average size of the isolated clusters s (filled 
symbols) as a function of the fraction of removed nodes f for the same systems as in Fig. 2. 
The size S is defined as the fraction of nodes contained in the largest cluster (that is, S = 1 
for f = 0). a, Fragmentation of the exponential network under random failures (squares) 
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the largest cluster S (open symbols) and the average size of the isolated clusters s (filled 
symbols) as a function of the fraction of removed nodes f for the same systems as in Fig. 2. 
The size S is defined as the fraction of nodes contained in the largest cluster (that is, S = 1 
for f = 0). a, Fragmentation of the exponential network under random failures (squares) 
and attacks (circles). b, Fragmentation of the scale-free network under random failures 
(blue squares) and attacks (red circles). The inset shows the error tolerance curves for the 
whole range of f, indicating that the main cluster falls apart only after it has been 
completely deflated
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Equally stable to random failures
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More sensitive  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A simple physical model for scaling in
protein–protein interaction networks
Eric J. Deeds*, Orr Ashenberg†, and Eugene I. Shakhnovich‡§
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Communicated by David Chandler, University of California, Berkeley, CA, November 10, 2005 (received for review September 23, 2005)

It has recently been demonstrated that many biological networks
exhibit a ‘‘scale-free’’ topology, for which the probability of ob-
serving a node with a certain number of edges (k) follows a power
law: i.e., p(k) ! k!". This observation has been reproduced by
evolutionary models. Here we consider the network of protein–
protein interactions (PPIs) and demonstrate that two published
independent measurements of these interactions produce graphs
that are only weakly correlated with one another despite their
strikingly similar topology. We then propose a physical model
based on the fundamental principle that (de)solvation is a major
physical factor in PPIs. This model reproduces not only the scale-
free nature of such graphs but also a number of higher-order
correlations in these networks. A key support of the model is
provided by the discovery of a significant correlation between the
number of interactions made by a protein and the fraction of
hydrophobic residues on its surface. The model presented in this
paper represents a physical model for experimentally determined
PPIs that comprehensively reproduces the topological features of
interaction networks. These results have profound implications for
understanding not only PPIs but also other types of scale-free
networks.

biological networks ! hydrophobic effect ! scale-free networks

Many studies in recent years have revealed that a large
variety of systems, from the World Wide Web to the

network of chemical reactions catalyzed in a cell, exhibit a
particularly interesting ‘‘scale-free’’ topology when represented
as graphs (1–6). In these systems the probability of finding an
object (or node) that connects k other nodes in the graph follows
a power-law; i.e., the degree distribution [or p(k)] has the form
p(k) ! k"! (1). This observation has (in general) been explained
in terms of dynamical models based on the principles of network
growth and an effective ‘‘preferential attachment’’ whereby
objects that have many links at some point in time are more likely
to acquire nodes as the graph grows than objects with fewer
connections (1, 7). The fact that scale-free networks are so often
observed in biological systems has lead to the proposal that many
evolutionary processes exhibit mechanisms similar to preferen-
tial attachment that are based on the duplication and divergence
of genes (4, 8–11).

One of the biological networks that has undergone consider-
able study is the set of interactions between proteins in the cell.
The advent of high-throughput methods for measuring the
binding of one protein to another using the yeast two-hybrid
(Y2H) system has allowed for the characterization of large
numbers of interactions between proteins in organisms such as
Saccharomyces cerevisiae, Helicobacter pylori, Caenorhabditis
elegans, and Drosophila melanogaster (12–16). Two major inde-
pendent Y2H experiments have been performed to determine
the ‘‘interactome’’ of S. cerevisiae (12, 13), and graphs of these
interactions reveal that these systems constitute scale-free net-
works with power-law exponents ranging from #2.0 to #2.7
(1, 3, 12, 13, 17, 18).

It has long been noted, however, that Y2H screens are rather
inaccurate and can lead to relatively ‘‘noisy’’ sets of interactions

(19–22). Indeed, when the two major S. cerevisiae protein–
protein interaction (PPI) experiments are compared with one
another, one finds that only #150 of the thousands of interac-
tions identified in each experiment are recovered in the other
experiment (22). A similar lack of agreement has recently been
found for independent Y2H experiments in D. melanogaster (23).
Although computational methods have been proposed that may
allow for some reduction of noise, it is clear that the rate of false
positives and false negatives in these experiments may be quite
high (19–22). Moreover, it is known that when a protein is used
as bait (i.e., fused to the DNA-binding component of the Y2H),
it will tend to exhibit more interactions than when used as prey
(19). It is thus very clear that these experiments may contain a
large number of artifacts.

In the present work we have explored these potential artifacts
by considering the hypothesis that the interactions reported by
the Y2H method are dominated by nonspecific interactions
between proteins. This hypothesis is primarily motivated by our
observation that, in general, the connectivity of a given protein
is not well correlated between the Uetz et al. (12) and Ito et al.
(13) experiments (see Fig. 1). We propose an entirely physical
model to explain how two networks with essentially uncorrelated
connectivities could nonetheless display profoundly similar
(scale-free) topologies. We demonstrate that this model, when
combined with an elemental source of experimental noise,
reproduces the degree distributions of the experimentally de-
termined PPI networks. The exposure of random surfaces
between experiments (and thus a varying number of hydropho-
bic residues that thermodynamically drive interactions) is suffi-
cient to explain the lack of correlation between two experiments
that exhibit scaling in their degree distributions. We further show
that ‘‘higher-order’’ features of these networks, such as the
scaling of the clustering coefficient of a node with its connec-
tivity (i.e., C as a function of k), are also recovered in this model.
These results indicate that the observation of such topological
features is not contingent on any specific evolutionary dynamics
or evolutionary pressure for such networks to be ‘‘robust,’’
‘‘hierarchical,’’ or ‘‘modular,’’ as has been previously proposed.
Finally, we observe a strong correlation between the hydropho-
bicity of a protein and its number of interacting partners, a
finding that is in complete agreement with our physical model.
Together these results demonstrate that the PPIs as assayed by
the Y2H techniques need not report only evolved and specific
interactions and that the interesting (nonrandom) topological
features of these graphs need not have an evolutionary origin.
Although our results do not indicate that these networks contain
no evolutionarily or biologically important information, they do
imply that a large number of observations in these and (perhaps)
other biological networks might contain considerable influences
from nonspecific interactions.
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It has recently been demonstrated that many biological networks
exhibit a ‘‘scale-free’’ topology, for which the probability of ob-
serving a node with a certain number of edges (k) follows a power
law: i.e., p(k) ! k!". This observation has been reproduced by
evolutionary models. Here we consider the network of protein–
protein interactions (PPIs) and demonstrate that two published
independent measurements of these interactions produce graphs
that are only weakly correlated with one another despite their
strikingly similar topology. We then propose a physical model
based on the fundamental principle that (de)solvation is a major
physical factor in PPIs. This model reproduces not only the scale-
free nature of such graphs but also a number of higher-order
correlations in these networks. A key support of the model is
provided by the discovery of a significant correlation between the
number of interactions made by a protein and the fraction of
hydrophobic residues on its surface. The model presented in this
paper represents a physical model for experimentally determined
PPIs that comprehensively reproduces the topological features of
interaction networks. These results have profound implications for
understanding not only PPIs but also other types of scale-free
networks.

biological networks ! hydrophobic effect ! scale-free networks

Many studies in recent years have revealed that a large
variety of systems, from the World Wide Web to the

network of chemical reactions catalyzed in a cell, exhibit a
particularly interesting ‘‘scale-free’’ topology when represented
as graphs (1–6). In these systems the probability of finding an
object (or node) that connects k other nodes in the graph follows
a power-law; i.e., the degree distribution [or p(k)] has the form
p(k) ! k"! (1). This observation has (in general) been explained
in terms of dynamical models based on the principles of network
growth and an effective ‘‘preferential attachment’’ whereby
objects that have many links at some point in time are more likely
to acquire nodes as the graph grows than objects with fewer
connections (1, 7). The fact that scale-free networks are so often
observed in biological systems has lead to the proposal that many
evolutionary processes exhibit mechanisms similar to preferen-
tial attachment that are based on the duplication and divergence
of genes (4, 8–11).

One of the biological networks that has undergone consider-
able study is the set of interactions between proteins in the cell.
The advent of high-throughput methods for measuring the
binding of one protein to another using the yeast two-hybrid
(Y2H) system has allowed for the characterization of large
numbers of interactions between proteins in organisms such as
Saccharomyces cerevisiae, Helicobacter pylori, Caenorhabditis
elegans, and Drosophila melanogaster (12–16). Two major inde-
pendent Y2H experiments have been performed to determine
the ‘‘interactome’’ of S. cerevisiae (12, 13), and graphs of these
interactions reveal that these systems constitute scale-free net-
works with power-law exponents ranging from #2.0 to #2.7
(1, 3, 12, 13, 17, 18).

It has long been noted, however, that Y2H screens are rather
inaccurate and can lead to relatively ‘‘noisy’’ sets of interactions

(19–22). Indeed, when the two major S. cerevisiae protein–
protein interaction (PPI) experiments are compared with one
another, one finds that only #150 of the thousands of interac-
tions identified in each experiment are recovered in the other
experiment (22). A similar lack of agreement has recently been
found for independent Y2H experiments in D. melanogaster (23).
Although computational methods have been proposed that may
allow for some reduction of noise, it is clear that the rate of false
positives and false negatives in these experiments may be quite
high (19–22). Moreover, it is known that when a protein is used
as bait (i.e., fused to the DNA-binding component of the Y2H),
it will tend to exhibit more interactions than when used as prey
(19). It is thus very clear that these experiments may contain a
large number of artifacts.

In the present work we have explored these potential artifacts
by considering the hypothesis that the interactions reported by
the Y2H method are dominated by nonspecific interactions
between proteins. This hypothesis is primarily motivated by our
observation that, in general, the connectivity of a given protein
is not well correlated between the Uetz et al. (12) and Ito et al.
(13) experiments (see Fig. 1). We propose an entirely physical
model to explain how two networks with essentially uncorrelated
connectivities could nonetheless display profoundly similar
(scale-free) topologies. We demonstrate that this model, when
combined with an elemental source of experimental noise,
reproduces the degree distributions of the experimentally de-
termined PPI networks. The exposure of random surfaces
between experiments (and thus a varying number of hydropho-
bic residues that thermodynamically drive interactions) is suffi-
cient to explain the lack of correlation between two experiments
that exhibit scaling in their degree distributions. We further show
that ‘‘higher-order’’ features of these networks, such as the
scaling of the clustering coefficient of a node with its connec-
tivity (i.e., C as a function of k), are also recovered in this model.
These results indicate that the observation of such topological
features is not contingent on any specific evolutionary dynamics
or evolutionary pressure for such networks to be ‘‘robust,’’
‘‘hierarchical,’’ or ‘‘modular,’’ as has been previously proposed.
Finally, we observe a strong correlation between the hydropho-
bicity of a protein and its number of interacting partners, a
finding that is in complete agreement with our physical model.
Together these results demonstrate that the PPIs as assayed by
the Y2H techniques need not report only evolved and specific
interactions and that the interesting (nonrandom) topological
features of these graphs need not have an evolutionary origin.
Although our results do not indicate that these networks contain
no evolutionarily or biologically important information, they do
imply that a large number of observations in these and (perhaps)
other biological networks might contain considerable influences
from nonspecific interactions.
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Materials and Methods
Interaction Data. All of the interaction data used in this paper was
obtained from the web site maintained by the authors of the
relevant references, i.e., Uetz (12) and Ito!ItoCore (13). Inter-
actions were obtained from these experiments and were not
modified or filtered in any way.

Hydrophobicity. To determine the exposed hydrophobicity of
proteins in these experiments (for use in determining the surface
fraction of hydrophobic residues, p, and creating the correlations
as discussed below), we employ an approximate ‘‘homology
modeling’’ procedure whereby solvent accessibilities obtained
from crystal structures are transferred to residues in the yeast
proteins that align to the structurally determined homolog. This
procedure is discussed in greater detail in the supporting infor-
mation, which is published on the PNAS web site.

Results and Discussion
Correlations in the Number of Interacting Partners. To further
explore the scale-free graphs obtained from these potentially
noisy experiments we considered the graph of interactions
between proteins for the 676 proteins that exhibited interactions
in both the Uetz et al. (12) and the Ito et al. (13) experiments.
We then compared the number of interactions measured for a
given protein in one of the assays to the number of interactions
for that same protein observed in the other assay. As evidenced
by Fig. 1a, the correlation between the degree of a given protein
in the two experiments is quite weak, with an R2 of 0.18 for nodes
of all degrees and an R2 of 0.068 if the three outliers are ignored
(i.e., considering only nodes of degree !20). The situation is

much the same when the comparison is made with the more
reliable ItoCore data set (13) (Fig. 1b). These very low R2 values
are striking, considering that they represent the same proteins
from the same organism assayed in very similar experiments, and
it is clear that these two graphs, although topologically similar,
are statistically unrelated. If one set of interactions is assumed
to represent the ‘‘true’’ set of evolved PPIs in yeast, it follows that
the other graph must consist largely of experimental noise, a
finding that casts doubt on the reliability of either data set.
Indeed, this observation may indicate why the number of inter-
actions made by a protein in PPI networks is only very weakly
correlated with evolutionary rates (24).

The fact that these networks are scale-free, however, rules out
the possibility that apparent PPIs in either case are entirely
random: If they were, the graph would represent a random graph
and one would observe a Poisson or Gaussian degree distribu-
tion in the resulting networks (1). To reconcile these two
observations, we posit a simple physical model of PPIs. First, we
assume that much of the free energy of binding that characterizes
a particular PPI is due to the burial and desolvation of hydro-
phobic groups at the binding interface (25–28). In this case, we
hypothesize that the low correlation in connectivity between the
two data sets is largely due to the exposure of different surfaces
for each protein in each of the Y2H experiments.

The MpK Model. Suppose there are N surface residues for a
particular protein, and a given fraction p of them are hydropho-
bic. Say that M of those residues are actually exposed and
involved in binding the other proteins in the experiment, and that
K out of those M residues are hydrophobic. If we assume that M
is sampled from N randomly and independently, it is clear that
the probability of finding K hydrophobic residues within M
follows a binomial distribution:

p"K# ! "M
K#pK"1 " p#M$K. [1]

In this case, each PPI will result in the burial of a certain total
number of hydrophobic groups; i.e., Kij % Ki & Kj (see Fig. 2).
The desolvation of Kij hydrophobic residues is related to the free
energy of protein binding and represents a standard way to treat
the strength of hydrophobic interactions (25–27). In this case we
simply take the free energy of binding Fij to be equal to $Kij. The
Y2H experiments are based on binding affinity, not binding free
energy, and it follows from statistical mechanics and thermody-
namics that the affinity Aij between two proteins i and j will
follow Aij ' exp($Fij) if we set the temperature scale of our
experiment such that kT % 1. To build a PPI network we define
an experimental limit of sensitivity AC corresponding to the
weakest interaction (the interaction that buries the fewest hy-
drophobic groups) that is nonetheless sufficiently strong to be
detected by the experiment. AC is directly related to the number
of hydrophobic residues that must be buried to observe an
interaction (i.e., KC).

To simulate this model we must first understand the distri-
bution of p values for proteins in the experiment; therefore, we
employ a simple homology modeling procedure (described in the
supporting information) to transfer solvent accessibilities from
proteins of known structures to their corresponding homologs
from the Ito Y2H data set. We find that this distribution is well
fit by a Gaussian function (see Fig. 2b). In our model of the Y2H
experiment, we sample 3,200 values of p from a Gaussian
distribution with the same mean and standard deviation (Fig.
2b). We use the same value of M for each protein in the
experiment given that the stereotypical size of the binding
surface is not determined by the surface area of the protein itself
but rather the average size of the interface across all of the other
proteins in the experiment. The choice of M is essentially

Fig. 1. Correlation between PPI networks. (a) The correlation between the
network degree of a given protein in the Ito (13) and Uetz (12) data sets. Each
point corresponds to a particular protein that exhibited interactions in both
experiments. (b) A plot similar to a but comparing the ItoCore data set with
Uetz.
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arbitrary (see the discussion of AC below and in the supporting
information), and in the case of our results it is set to be 100.

We find that, within certain ranges of AC (and its logarithm
KC), the networks created by this MpK model discussed above
exhibit degree distributions that are well fit by power-law
functions; a representative example is shown in Fig. 2c (for a
discussion of the variance in the degree distributions for differ-
ent realizations of this model, see the supporting information).
This model indicates that, at stringent cutoffs, many of the nodes
in the graph are orphans, a finding that fits well with experi-
mental observations from both the Uetz and ItoCore data sets
(12, 13) (note that, in contrast to the graphs from Fig. 3, orphans
are displayed on the log–log plot in Fig. 2c by adding 1 to the
degree of each node). This finding indicates that the apparent
scaling in these systems could very easily arise from a set of
completely nonspecific interactions that contain no evolutionary
information. AC determines the apparent power-law exponent !
and is the only truly fittable parameter in the model; for any
value of M that is sufficiently large to capture the differences in
p that exist in the population, one may obtain a degree distri-
bution of a given ! simply by changing the value of AC. The
dependence of ! on the cutoff parameter, as well as the
distribution of ! values obtained from different realizations of
the MpK model at a given cutoff, are explored in greater detail
in the supporting information. We have also solved the MpK
model analytically in the limit of high connectivity and find that

the power-law fit we observe is well justified given the limited
number of proteins we are simulating (for a discussion of this
analytical work, see the supporting information). This solution
explicitly demonstrates that the power-law exponent should be
related to the cutoff parameter (AC or the cutoff in buried
hydrophobicity, KC). Although this model is mathematically
related to other static models of scale-free networks (29), it is
important to note that our model represents a model of PPI
networks that attempts to consider the physics of protein binding
and is based on a Gaussian distribution of some underlying
property. It should also be noted that, although the MpK model
represents a very useful model for comparison with the exper-
imental results (see below), it is actually simply one member of
a large class of models that produced scale-free networks based
on Gaussian distributions of quantities from which graphs are
built (see the analytical solution in the supporting information
for an example of one such related model).

Random Noise. The above model, although suggestive, is not
necessarily a complete model of all of the PPI experiments; for
instance, in the case of the original Ito data set, the number of
orphans is much smaller (the experiment reports many more
connected nodes than our model predicts), and the degree
distribution deviates from power-law behavior at small values of
k (6). To better model both of these experimental observations,
we add an elemental source of noise to our model by linking a

Fig. 2. A physical model for PPI measurements. (a) A schematic of the model described in the text. Association free energies are largely the result of desolvation
of the two protein surfaces. The overall burial of hydrophobic groups is represented by the sum of the contributions from each protein. (b) The distribution of
surface hydrophobicities in yeast proteins. The fraction of surface residues that are hydrophobic (defined as residues AVILMFYW) is calculated according to the
description in the supporting information. This distribution is taken from proteins in the Ito experiment (13). The red squares represent the model
hydrophobicities sampled from a Gaussian distribution with the same mean and standard deviation as the Ito proteins themselves. (c) A degree distribution for
the realization of the model used in b. The cutoff was chosen such that the power-law fit gives an exponent of approximately!2.0, close to that of Ito graph.
The degrees in this plot are shifted by "1 to allow for orphans (nodes of degree 0) to be displayed on a log–log plot. Note that the fraction of orphans in the
graph is very high.
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Lethality and centrality (2008)
GeneWays

Y2H
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Closeness centrality (farness) = "
                              sum of its distances to all other nodes

degree centrality = degree

Betweenness centrality of i = the number of shortest path  
                       between all other nodes which go through i



Motifs



Motifs



Clusters in networks



Extent of annotation of proteins in model species. For 
each species, the charts give the fractions and 
numbers of annotated and unannotated proteins, 
according to the three ontologies of the GO 
annotation. The numbers are based on the Entrez 
Gene and the WormBase databases as of September 
2006.

FROM: 
Network-based prediction of protein function 
Roded Sharan, Igor Ulitsky & Ron Shamir

Function prediction



Function prediction
Global protein function prediction from protein-protein interaction networks 
"
Alexei Vazquez, Alessandro Flammini, Amos Maritan & Alessandro Vespignani	
 

Figure 1. Illustration of the method. 
Subgraph of the protein interaction network of the yeast Saccharomyces cerevisiae. Proteins in gray boxes are 
unclassified (unknown function); the others are classified proteins (functions in brackets) and are labeled according to the 
following criteria: 1, cell growth; 2, budding, cell polarity and filament formation; 3, pheromone response, mating-type 
determination, sex-specific proteins; 4, cell cycle checkpoint proteins; 5, cytokinesis; 6, rRNA synthesis; 7, tRNA synthesis; 8, 
transcriptional control; 9, other transcription activities; 10, other pheromone response activities; 11, stress response; 12, 
nuclear organization. Given one of these proteins of unknown function, if we take as a prediction the function that appears more 
often in the neighbor proteins of known function, then we obtain the following classification (from top to bottom) YNL127W (2), 
YDR200C (3,4,10) and YLR238W (12). Our method, however, considers also the interactions among unclassified proteins. If we 
iterate once more the 'majority rule' by taking into account the interactions among the three unclassified proteins, we obtain the 
following classification: YNL127W (2,4), YDR200C (3,4,10) and YLR238W (12). This way we determined another possible 
function for YNL127W.



From network
FROM: 
Network-based prediction of protein function 
Roded Sharan, Igor Ulitsky & Ron Shamir



Alignment of networks



Outline

1. Learning biological networks: experiments 
2. Statistical properties of the networks 
3. Understanding networks structure: motifs, modules, etc 
4. From structure to function 
5. Compare/align networks 
6. Dynamics of networks



Evolution of  
power-law graphs 

1. Growth"
2. Preferential attachment"
"

"

              
Albert and Barabasi 2000 
           
Herbert A. Simon 1955 
    Yule 1925

 10 

quantum level is proportional to the number of 
particles already sitting on that level. This was 
first pointed out in 1974 by Hill [21] and further 
discussed by Ijiri and Simon (see the Chapter 
"Some distributions associated with Bose-Einstein 
statistics" in Ref. [22]). This link was rediscovered 
in 2001 by Bianconi and Barabasi [23]. 

Re-inventing Willis 
We summarized the re-inventions, described in 
this paper, in Table 1. We treat Simon’s and 
Yule’s models as different things, because they 

use different mathematical approaches (alternative 
ways to America). We count it as a re-discovery 
when the same America is discovered in the same 
way. Even with this restriction almost everything 
appears to be re-discovered twice.  
 
We conclude that re-discovering America is the most 
common scientific occupation, both in this country 
and abroad:  the scientists are busy with it two thirds 
of time. 
 

 

 

Table 1. Re-inventing Willis. 

Phenomenon Discovered Re-discovered 
Yule’s process Yule (1925) Fermi (1949) Huberman and Adamic (1999) 

Simon’s process Simon (1955) Günter et al (1992) Barabasi and Albert (1999) 
Champernowne’s 
process 

Champernowne  
(1953) 

Levy and Solomon (1996)  

Power law of 
word frequencies 

Estoup (before 1916) Condon (1928) Zipf (1935) 

Power law of 
scientific citing 

Price (1965) Silagadze (1997) Redner (1998) 

  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Evolution of graphs
• Growth"

1. start with m0 nodes"
2. add a node with m edges"
3. connect these edges to existing nodes"
at timestep t : t+m0 nodes, tm edges



Evolution of graphs
• Preferential attachment"
   Probability Π of connection to  

node i depends on the degree ki of this 
node."

" "
" " E.g."
"

             “Rich gets richer”



Better evolution of graphs

• Gene duplication"
• Mutations"
• Preferential attachment

A. Wagner, M.Lassig, A.Maritan etc



More biological  
neutral evolution of graphs

• Gene duplication"
"

"

"

• Mutations

A.Wagner,  M.Lassig,  A.Maritan,  S.Redner  etc.



• Gene duplication"
"

"

"

• Mutations (rich gets richer)"
"

"

=> Broad (not power-law) distribution!

A.Wagner,  M.Lassig,  A.Maritan,  S.Redner  etc.

More biological  
neutral evolution of graphs



• Gene duplication and re-wiring

More biological  
neutral evolution of graphs
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Metabolic networks
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Metabolic Pathways

KEGG 
database



Flux Balance Analysis
  No accumulation of intermediates  
"
  # of molecules in = # of molecules out 
"
  Vin+Vout = 0 
"
Example: 
 2A+B -> 3D 
 D+C->E 
"
 (2VA+VB)/3 =VE 



Flux Balance Analysis

S.v = b
A:-r1=-RA
B:-r1+r4-r2-r3=0
C:+r2-r5-r6=+Rc
D:+r3+r5-r4-r7=+R D
E:+r6+r7=+R E

Steady state Mass Balance

Internal fluxes

-1  0  0  0  0  0  0  
 1 –1 -1  1  0  0  0 
 0  1  0  0 –1 –1  0   
 0  0  1 –1  1  0 –1 
 0  0  0  0  0  1  1   

Transportation fluxes

r1 r2 r3 r4 r5 r6 r7 

-RA
 0
 RC
 RD
 RE 

=

A B C E
RA r1 r2

r3

RE

Boundary

D

r4 r5

r6

r7

RD

RC



Flux Balance Analysis

S’.v’ = b’

Steady state Mass Balance

-10
 0
 0
 0
 0 

=

A B C E
RA=10 r1 r2

r3

RE

Boundary

D

r4 r5

r6

r7

RD

RC

10 Unknown fluxes

-1  0  0  0  0  0  0  0  0  0
 1 –1 -1  1  0  0  0  0  0  0
 0  1  0  0 –1 –1  0 –1  0  0  
 0  0  1 –1  1  0 –1  0 –1  0
 0  0  0  0  0  1  1  0  0 -1   

1 Known fluxes

r1 r2 r3 r4 r5 r6 r7 RC RD RE 
A:-r1=-10
B:-r1+r4-r2-r3=0
C:r2-r5-r6-R C=0
D:r3+r5-r4-r7-R D=0
E:r6+r7-R E=0



Flux Balance Analysis

Boundary

A B C E
r1 r2

r3

D

r4 r5

r6

r7

Total Number of fluxes      = 11
Total numer of known flux   =  1
Total number of Metabolites =  5
Total number of d.f         = 11-1+5=5
(i.e 5 possible solutions for this
reaction network)

RA RE

RD

RC



Growth rxn

Requirement of metabolites based on the biomass
composition for E.coli.

+1BIOM-0.582GLY-0.0485MethylTHF-0.25GLN- 45.135ATP+44.96ADP+ 44.96Pi -
0.25GLU-0.176PHE-0.131TYR-0.205SER-0.054TRP-0.229ASP-0.229ASN-0.326LYS-
0.087CYS-0.146MET-0.241THR-0.276ILE-0.21PRO-0.281ARG-0.488ALA-0.402VAL-
0.428LEU-0.09HIS-0.203GTP-0.136UTP-0.126CTP-0.0247dATP-0.0254dGTP-
0.0254dCTP-0.0247dTTP-0.00258PS -0.09675PE-0.02322PG-0.00645CL-
0.00785LPS-0.0276Pept-0.0341PTRSC-0.007SPRMD-0.154Glycogen;

Millimoles of metabolites present in 1 gm (dry wt.) of biomass

Flux Balance Analysis
• If cells optimize their growth rate  

then we need to find a solution that 
maximizes growth."

• Growth = biomass/time



Flux Balance Analysis
• Input: stoichiometric matrix 

           optimization function (biomass)"
• Constrains"

"
"
"
"
 

0=−•= bvSX
dt
d

∑ •=⋅= vcii vcZMaximize:



Flux	Balance	Analysis
• Linear	programming



Flux	Balance	Analysis
• Linear	programming



Flux	Balance	Analysis

• Effects	of	external	condi:ons	
"

• Effect	of	muta:ons	
"

• Predic:ve	cell	physiology	



Flux	Balance	Analysis
• Effect	of	C	and	N	starva:on



Flux	Balance	Analysis
• Effect	of	muta:ons	and	starva:on



Predicting outcomes of knockouts



Predicting outcomes of knockouts



Networks
• Structure	and	dynamics	of	some	biological	
network	can	be	studied	experimentally	 

• Networks	don’t	look	like	random	graphs, 
more	like	power-law	graphs.  
	-	results	of	neutral	evolu:on  
	-	results	of	selec:on


