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Protein-protein Interactions

Yeast two-hybrid assay:
Does a protein A interact with B ?
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Protein-protein Interactions

Large scale yeast two-hybrid assay:
Find pairs of interacting proteins

A comprehensive two-hybrid analysis to explore
the yeast protein interactome.
Ito T et al, PNAS 2001

A comprehensive analysis of protein-protein
interactions in S. cerevisiae.
P. Uetz et al, Nature 2000
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Protein-protein Interactions
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High-Throughput Yeast Two-Hybrid Assays
for Large-Scale Protein Interaction Mapping

Next_generati on Albertha J. M. Walhout and Marc Vidal®

sequencing to generate
interactome datasets
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Figure 1 | Stitch-seq interactome mapping. (a) Outline of interactome mapping using different
sequencing technologies. Each DNA fragment in each interacting pair is PCR-amplified individually
and Sanger-sequenced; the association is tracked via position on the plate (top). Or each pair of DNA
fragments is placed on the same PCR amplicon by PCR stitching; the amplicons are then collected
and subjected to next-generation sequencing (bottom). (b) Outline of a PCR-stitching experiment.




High-Throughput Yeast Two-Hybrid Assays
for Large-Scale Protein Interaction Mapping

Next-generation Albertha J. M. Walhout and Marc Vidal®

sequencing to generate
interactome datasets
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High-Throughput Yeast Two-Hybrid Assays
for Large-Scale Protein Interaction Mapping

Next-generation Albertha J. M. Walhout and Marc Vidal®

sequencing to generate
interactome datasets
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Evidence for Network Evolution
in an Arabidopsis Interactome Map

Arabidopsis Interactome Mapping Consortium*t
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Evidence for Network Evolution
in an Arabidopsis Interactome Map

Arabidopsis Interactome Mapping Consortium*t

Plants have unique features that evolved in response to their environments and ecosystems. A full
account of the complex cellular networks that underlie plant-specific functions & still missing. We
describe a proteome-wide binary protein-protein interaction map fd
the plant Arabidopsis thaliona containing about 6200 highly relia
2700 proteins. A global organization of plant biological processes
analyses of the resulting network, together with large numbers of
links between proteins and pathmays. We observe a dynamic rewir
gene duplication events, providing evidence for a model of evoluti
networks, This and future plant interactome maps should facilitate
understand plant biclogy and improve crops.
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*ig. 3. Communities in Al-1,,,, (bottom) and in a typical randomized network (top left) (fig. $9). Only
he largest connected component of each network & shown. Colored regions indicate communities
mriched in GO annotations summarized by the indicated terms (table $10). (Upper right) Distribution
f randomized networks as a function of the total number and number of GO annotation enriched
;ommunities they contain. White arrow, position of the shown randomized network; red dot and
irrow, position of Al-1,,,- GA, gibberellic acid; JA, jasmonic acid; TCA, tricarboxylic acid.
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Interaction landscape of membrane-protein
complexes in Saccharomyces cerevisiae

0010, 1038/ natere 11354

Mohan Babu'“®, James Vishlom™**, Shuye Pu’, Xinghua Guo', Chris Graham', Bjorn D. M. Bean®, Tielen E. Burston®,
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Figure 2| Global organization of yeast MP complexes. Predicted MP known complexes with new components. Our purifications were most
clusters (subumins shown as stendlarly coloured nodes) inferred from the saccessful for MPs localized to the Golgl and endoplasmic retiodum, a bias
integrated network of high confidence PPI (odges), demarcated according o reflected In the highlighted examples. For each complex, previously reported

primary compartment asmotations. Repeesentative complexes ot the periphery components (red nodes), novel subunits (ydlow nodes) and previoualy
highlight scene of the findings of our study, induding novel complexes and reported but not yet validated interactors (pink nodes) are displayed




Agreement between
d ata b aS e S Literature curation of protein interactions:

measuring agreement across major public
databases

Andrei L. Turinsky’, Sabry Razick**, Brian Turner’, lan M. Donaldson®** and
Shoshana J. Wodak™"56*

(a)
(=)
b <

e

0.5
Sorensen-Dice Similarity Scale

P R T P PR T Y N PR Y SR T B T LT D TR TR TR P M N B T IR M R



Regulatory network
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Mining logic gates in prokaryotic transcriptional regulation networks
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Measuring gene expression
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Network of co-expression

Pattern of expression changes
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Metabolic networks
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Metabolic networks
(a)

S1+82—E>P1+P2

(b) (c)
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Organism Genes in Genome Genes in Model Reactions Metabolites Date of reconstruction Reference
Haemophilus influenzae 1,775 296 488 343 June 1999 B)
Escherichia coli 4,405 660 627 438 May 2000 )
Saccharomyces cerevisiae 6,183 708 1,175 584 February 2003 (6]

Mus musculus 28,287 473 1220 872 January 2005 7]
Homo sapiens 21,090(€] 3,623 3,673 - January 2007 (9]
Mycobacterium tuberculosis 4,402 661 939 828 June 2007 (10]
Bacillus subtilis 4,114 844 1,020 988 September 2007 (1]
Synechocystis sp. PCC6803 3,221 633 831 704 October 2008 (12]
Salmonella typhimurium 4,489 1,083 1,087 774 April 2009 [13]

Arabidopsis thaliana 27,379 1,419, 1,567 1,748 February 2010 [14)
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Graph theory
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it’s not a random graph!

Andreas Wagner
Mol. Biol. Evol. 18(7):1283-1292. 2001
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it’s not a random graph!

Table 1
Comparison of Statistical Features Between Random Graphs and the Yeast Protein
Interaction Network

RANDOM GRAPHS

Pl
YEASI ER (v = 2.5)

Whole graph

Nodes .. ... ... ... .. 985 984.02(10.39) 970.7 (81.57)

Degree. ... 1.83 1.85(0.98) 1.64 (1.76)

No. of components. ... ............ 163 108 (8)* (30.6)*
Giant component

Nodes ... .. ... 466 624.0 (38.7)* 336.9 (86)

Degree. ... 2.3 2.07(1.05) 2.50(2.6)

Clustering coefficient (<10 %) ... ... 0.59 (0.9)* 4.02(2.3)*

Characteristic path length ... ... ... 7.14 I5.88(1.76)* 6.01(1.14)

Wagner MBE 2000



it’s not a random graph!

The large-scale organization
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ents and reactions'. However, despite the key role of these L . 5
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Random vs power-law

Barabasi A et.al. Nature:411(2001)
Wagner A Mol Biol Evol:18(2001)

Scale-free

k)
log P(k)

k log k



Other power-law networks
Barabasi A et.al. Nature:411(2001)

Other power-law networks:
* Metabolic network

- Network of social interactions:

scientific collaborations, actors in films

- The Internet:

links, physical connections
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The web of human sexual contacts

Promiscuous ndividuals are the vulnerable nodes Lo largel in sale-sex campaigns.,
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Figure 2 Scale-free distribution of the number of sexual partners for females and males. a, Distribution of number of partners, k. in the
previous 12 months. Note the karger average number of partners for male respondents: this difference may be due to ‘measurement bias’
— social expectations may lead males to inflate their reported number of sexual partners. Note that the distributions are both linear,
indicating scale-free power-law behaviour. Moreover. the two curves are roughly parallel. indicating similar scaling exponents. For
females. a=2.54 = 0.2 in the range k> 4, and for males, a=2.31+ 0.2 in the range k> 5. b, Distribution of the total number of part-
ners K., over respondents’ entire lifetimes. For females. a =2.1 0.3 in the range k> 20, and for males, a, =1.6=0.3 in the
range 20 < k,, < 400. Estimates for females and males agree within statistical uncertainty.



Random vs power-law

Barabasi A et.al. Nature:411(2001)
Wagner A Mol Biol Evol:18(2001)

The network of protein-protein interactions
(and other molecular biological networks)
are scale-free networks!

WHY?
» Scale-free networks are "better”..
OR/AND
* Biological networks became scale-free due to

evolution.



Random Power-law

- Removal of a randomly |+ Removal of a random
picked node significantly | node slightly increases the

Increases average path.

the average path. + Removal of a highly-
 All nodes are of equal connected node leads to

“importance”. drastic increase of the

verage path!
Powgwm%‘n‘ KS

» Tolerant to random “attacks”,
* But more sensitive to targeted attacks!
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exponential (E) and scale-free (SF) network models, each containing N
= 10,000 nodes and 20 ,000 links (that 1s, k= 4).

IIIIIIIII‘IIII..- "aaa

—

Sand <

0.5

I




2 "a v ~. 1 —

s
! E ¢ - .

. '\

1 55 <S> a
o = Failure
o e Attack
o % fc

107

<s>and S
L2
o
o
N

ooo.... 1 01

1 .:..aa---ll---l.ln:::::g'....'llﬂ

0ooopo
coocaooououaooooooo
ooq

o 10°
[ o Internet
oo 10-—1
0 +——Sooooscsssessechesesssee—— () 29000544
0.0 0.1 0.00 0.04 0.08 0.12

f

Figure 3 Network fragmentation under random failures and attacks. The relative size of
the largest cluster S (open symbols) and the average size of the isolated clusters s (filled
symbols) as a function of the fraction of removed nodes f for the same systems as in Fig. 2.
The size S 1s defined as the fraction of nodes contained in the largest cluster (that is, S =1
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Random Power-law

Equally stable to random failures

More sensitive
to attacks

POWER-LAW NETWORKS

» Tolerant to random “attacks”,
* But more sensitive to targeted attacks!
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Lethality and centrality (2001)

. Jeang®, 5. B Masont, A-L. Barabeisi®,
£ M. Olevaid
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Lethality and centrality in protein networks

The most highly connected proteinsinthe cellare the mostimportant forits survival.



PNAS | January 10, 2006

A simple physical model for scaling in
protein—protein interaction networks

Eric J. Deeds*, Orr Ashenberg’, and Eugene I. Shakhnovich*s
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Fig.2. A physical model for PPl measurements. (a) A schematic of the model described in the text. Association free energies are largely the result of desolvation
boocooo o of the two protein surfaces. The overall burial of hydrophobic groups is represented by the sum of the contributions from each protein. (b) The distribution of
surface hydrophobicities in yeast proteins. The fraction of surface residues that are hydrophobic (defined as residues AVILMFYW) is calculated according to the
i 1 & 1 4 1 3 1 A | " 1 description in the supporting information. This distribution is taken from proteins in the Ito experiment (13). The red squares represent the model
0 5 10 15 20 25 a0 hydrophobicities sampled from a Gaussian distribution with the same mean and standard deviation as the Ito proteins themselves. (c) A degree distribution for
- Degree i : ItoCor =" — the realization of the model used in b. The cutoff was chosen such that the power-law fit gives an exponent of approximately—2.0, close to that of Ito graph.
cgree in -ore The degrees in this plot are shifted by +1 to allow for orphans (nodes of degree 0) to be displayed on a log—log plot. Note that the fraction of orphans in the

graph is very high.
Fig. 1. Correlation between PPl networks. (a) The correlation between the
network degree of a given protein in the Ito (13) and Uetz (12) data sets. Each
point corresponds to a particular protein that exhibited interactions in both
experiments. (b) A plot similar to a but comparing the ItoCore data set with 44
Uetz.



Lethality and centrality (2008)
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Network properties of genes harboring inherited

disease mutations
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centrality, E) Katz centrality and F) Alpha centrality of

centrality, C) Betweenness centrality, D) Eigenvector
the same graph.

Examples of A) Degree centrality, B) Closeness



Motifs

Network Nodes  Edges Necal Nrand2SD  Zscore | Nreal Nrand £SD Z score l Nieal Npand £SD
Gene regulation X Feed- X Bi-fan
(transcription) V forward M
Y loop
vV Z w
Z
E. coli 424 519 40 T7+3 10 203 4712 13
S. cerevisiae® 685 1,052 70 11+4 14 1812 300+40 41
Neurons \ Bi-fan X Bi-
K N pa
Z W Y& ©”
w
C. eleganst 252 509 s 127 55+13 53 227 35+10 20
Food webs X Three X Bi-
V chain K N parallel
Y Y Z
\ N ¥
Z w
Little Rock 92 o84 3219 3120 £ 50 2.1 7295 2220+210 25
Ythan 83 391 1182 1020 = 20 7.2 1357 230 = 50 23
St. Martin 42 205 469 450 = 10 NS 382 130 £ 20 12
Chesapeake 31 67 80 82+4 NS 26 o+2 8
Coachella 29 243 279 235+ 12 3.6 181 80 %20 5
Skipwith 25 189 184 150+ 7 55 397 80+ 25 13



transcription
network
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25 OCTOBER 2002 VOL 298 SCIENCE

Network Motifs: Simple Building
Blocks of Complex Networks

R. Milo," S. Shen-Orr,' S. Itzkovitz,’ N. Kashtan,’ D. Chklovskii,?
U. Alon™*



Clusters in networks
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Protein complexes and functional modules in
molecular networks

Victor Spirin and Leonid A. Mirny*

Harvard-MIT Division of Health Sciences and Technology, 16-343, Massachusetts Institute of Technology, 77 Massachusetts Avenue, ¢



=... | Function prediction
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Network-based prediction of protein function _ o _
Roded Sharan, Igor Ulitsky & Ron Shamir Extent of annotation of proteins in model species. For

each species, the charts give the fractions and
numbers of annotated and unannotated proteins,
according to the three ontologies of the GO
annotation. The numbers are based on the Entrez

Gene and the WormBase databases as of September
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Function prediction

Global protein function prediction from protein-protein interaction networks

~
. 1
Alexei Vazquez, Alessandro Flammini, Amos Maritan & Alessandro Vespignanl 2
2 H YKRossW YALO16W [ 4
5
C
YNL127W
3
YDR200C YMRO52W |< 4
10
YLR238W
8 6
11 YBL0O93C YPR110C 7
12 12

Figure 1. Illustration of the method.

Subgraph of the protein interaction network of the yeast Saccharomyces cerevisiae. Proteins in gray boxes are
unclassified (unknown function); the others are classified proteins (functions in brackets) and are labeled according to the
following criteria: 1, cell growth; 2, budding, cell polarity and filament formation; 3, pheromone response, mating-type
determination, sex-specific proteins; 4, cell cycle checkpoint proteins; 5, cytokinesis; 6, rRNA synthesis; 7, tRNA synthesis; 8,
transcriptional control; 9, other transcription activities; 10, other pheromone response activities; 11, stress response; 12,
nuclear organization. Given one of these proteins of unknown function, if we take as a prediction the function that appears more
often in the neighbor proteins of known function, then we obtain the following classification (from top to bottom) YNL127W (2),
YDR200C (3,4,10) and YLR238W (12). Our method, however, considers also the interactions among unclassified proteins. If we
iterate once more the 'majority rule' by taking into account the interactions among the three unclassified proteins, we obtain the
following classification: YNL127W (2,4), YDR200C (3,4,10) and YLR238W (12). This way we determined another possible
function for YNL127W.



From network

Network-based prediction of protein function
Roded Sharan, Igor Ulitsky & Ron Shamir




Alignment of networks

MM MACNY PRSP 2 Parpld

Cross-species analysis of biological networks
by Bayesian alignment

Johannes Berg' and Michael Lassig
Iratmut 10r Theoretiche Praysik, Usiversitat 1o Koln, Toipichersts anse 77, 50037 Cologne, Germany
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Outline

Learning biological networks: experiments

Statistical properties of the networks

Understanding networks structure: motifs, modules, etc
From structure to function

Compare/align networks

Dynamics of networks



Evolution of
power-law graphs
1. Growth
2. Preferential attachment

—Albertand Barabasi 2000—
—HerbertA-—Simon—1955
Yule 1925

Table 1. Re-inventing Willis.

Phenomenon Discovered Re-discovered

Yule’s process Yule (1925) Fermi (1949) Huberman and Adamic (1999)
Simon’s process Simon (1955) Giinter et al (1992) Barabasi and Albert (1999)
Champernowne’s | Champernowne Levy and Solomon (1996)

process (1953)

Power law of | Estoup (before 1916) | Condon (1928) Zipf (1935)

word frequencies

Power law  of | Price (1965) Silagadze (1997) Redner (1998)

scientific citing




Evolution of graphs

« Growth
1. start with mo nodes
2. add a node with m edges
3. connect these edges to existing nodes
at timestep t : t+mo nodes, tm edges



Evolution of graphs

* Preferential attachment

Probability IT of connection to
node ; depends on the degree £; of this
node.

— k?}
Zj kj

L

E.Q. [1(k;)

“Rich gets richer”



Better evolution of graphs

A. Wagner, M.Lassig, A.Maritan etc

» Gene duplication
« Mutations
« Preferential attachment



More biological
neutral evolution of graphs

A.Wagner, M.Lassig, A.Maritan, S.Redner etc.
« Gene duplication

<&

« Mutations




More biological
neutral evolution of graphs

A.Wagner, M.Lassig, A.Maritan, S.Redner etc.
» Gene duplication

\/ Y
/N = /
/ \ // \.\
N\ N

/ / \
'/ 1/ \\.. //
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\ '/'
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+ Mutations (rich gets richer)

/ — - .
O—e << O—e o<j
® O

=> Broad (not power-law) distribution!




More biological

neutral evolution of graphs
» (Gene duplication and re-wiring

Infinite-Order Percolation and Giant Fluctuations in a Protein Interaction Network

J. Kim!, P. L. Krapivsky?, B. Kahng!, and S. Redner?

new node .

addition B/N duplication 1- §

target node

FIG. 1. Growth steps of the protein interaction network:
The new node duplicates 2 out of the 3 links between the
target node (shaded) and its neighbors. Each successful du-
plication occurs with probability 1 — 4 (solid lines). The new
node also attaches to any other network node with probability
3/N (dotted lines). Thus 3 previously disconnected clusters
are joined by the complete event.
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Evidence for Network Evolution
in an Arabidopsis Interactome Map

Arabidopsis Interactome Mapping Consortium*t

Plants have unique features that evolved in response to their environments and ecosystems. A full
account of the complex cellular networks that underlie plant-specific functions is still missing. We
describe a proteome-wide binary protein-protein interaction map for the interactome network of
the plant Arabidopsis thaliana containing about 6200 highly rellable interactions between about
2700 proteins. A global organization of plant biological processes emerges from community
analyses of the resulting network, together with large numbers of novel hypothetical functional

links between proteins and pathways. We observe a dynami
gene duplication events, providing evidence for a model of
networks. This and future plant interactome maps should fi
understand plant biology and improve crops.

lassical penetic and molocular appeoaches
have provided fundamental understand-
mg of processes such as growth control
or development and molecular descriptions of
genotype-to-phenotype relationships for a varie-

*All authors with their affifations asd contributions are
listed at the ead of the paper.

170 whom comespondence should be addressed. E-mail:
mare dal@di anaedady edar@aliceds pascal braue@®
diclharvand.edy; david_hili@cfclhanard edu

ncemag.org SCIENCE VOL 333 29 JULY 2011
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Metabolic networks

64
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Flux Balance Analysis

No accumulation of intermediates

# of molecules in = # of molecules out

Vin+Vout = 0
Example:
2A+B -> 3D
D+C->E

(2Va+VB) /3 =Ve



Flux Balance Analysis
—ﬁRA A —— B i»ctcg El»RE

"

Boundary

Steady state Mass Balance

{rl r, ryr, re rg r7]

A:-rl=-R, -1 0 0 0 0 O -R,
B:-rl+r4-r2-r3=0 S.v=Db | 1-1-1 1 0 o 0
C:+r2-r5-r6=+R_ 0 1 0 0-1-1 — | Kk
D:+r3+r5-r4-r7=+R 8 g (])-_3 2)' :(L)_ 11::
E:+r6+r7=+Rg

—

Internal fluxes Transportation fluxes



Flux Balance Analysis

Steady state Mass Balance

A:-rl=-10 1 0 0 0 0 0 0 0 00 |-10
B:-rl+rd-r2-r3=0 1-1-1 1 0 0 0 0 0 0 | O
C:r2-r5-r6-R~=0 0O 1 0 0-1-1 0-1 0 & | 0
D:r3+r5-r4-r7-R =0 = 0O 0 1-1 1 0-1 0-110 0
E:r6+r7-R =0 o 0 0o o 0 1 1 O 01 0
\_v_/

10 Unknown fluxes 1 Known fluxes

S’".v/ = b’



Flux Balance Analysis

LA SR _>(T;_> El—Ri

Boundary
Total Number of fluxes = 11
Total numer of known flux = 1
Total number of Metabolites = 5
Total number of d4d.f = 11-1+5=5

(L.e 5 possible solutions for this
reaction network)



Flux Balance Analysis

» |If cells optimize their growth rate
then we need to find a solution that
maximizes growth.

« Growth = biomass/time

+1BIOM-0.582GLY-0.0485Methyl1THF-0.25GLN- 45 .135ATP+44 .96ADP+ 44.96Pi -
0.25GLU-0.176PHE-0.131TYR-0.205SER-0.054TRP-0.229ASP-0.229ASN-0.326LYS~-
0.087CYS-0.146MET-0.241THR-0.276ILE-0.21PRO-0.281ARG-0.488ALA-0.402VAL-
0.428LEU-0.09HIS-0.203GTP-0.136UTP-0.126CTP-0.0247dATP-0.0254dGTP-
0.0254dCTP-0.0247dTTP-0.00258PS -0.09675PE-0.02322PG-0.00645CL~-
0.00785LPS-0.0276Pept-0.0341PTRSC-0.007SPRMD-0.154Glycogen;

Millimoles of metabolites present in 1 gm (dry wt.) of biomass



Flux Balance Analysis

* Input: stoichiometric matrix

optimization function (biomass)

« Constrains

iZ§=S'V—b=0
dt

Maximize: Z = C;*V; =C®V



Flux Balance Analysis

* Linear programming

6 Linear Programming

Constraint 1
Constraint 2
Constraint 3
Constraint 4
Constraint 5
Constraint 6
Constraint 7
Constraint 8
Constraint 9

Constraint 10

Objective function

poy <= 10 154

IO “= X

IZ‘x*y

*Min |:2 Max FIO yMin F? yhdax IIO

The maximum Is reached when: fiy=0,x= 10} The objective function then has a value of [20

o it 1o raaashad udrvan' va -1 U—M m e ahilasthus fiinsatans hvam haes auvaliniie A |n [ﬁ




Flux Balance Analysis

* Linear programming

Corner defined
by these 3
constraints




Flux Balance Analysis

o Effects of external conditions
e Effect of mutations

* Predictive cell physiology



e Effect of C and N starvation
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Flux Balance Analysis
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Flux Balance Analysis

e Effect of mutations and starvation
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Predicting outcomes of knockouts

Topology-Based Metabolic Predictions

2304 Biophysical Journal Volume 81 September 2006 2304-2311

Using the Topology of Metabolic Networks to Predict Viability
of Mutant Strains

Zeba Wunderlich* and Leonid A. Mimy'

*Biophysics Program, Harvard University, Cambridge, Massachusetts; and "Harvard-MIT Division of Health Sciences and Technology,
Cambridge, Massachusetts



Predicting outcomes of knockouts

A  Combined E. coli Dataset

B Gerdes et al. E. coli Dataset C Combined Yeast Dataset

Viable

In Vivo
In Vivo
Viable
in Vivo
Viable

Inviable

Inviable

Inviable

Viable Inviable Viable
In Silico

Inviable

Inviable Vable
In Sikico

In Sifico

2304

Biophysical Journal Volume 81 September 2006 2304-2311

Using the Topology of Metabolic Networks to Predict Viability
of Mutant Strains

Zeba Wunderlich* and Leonid A. Mimy'

*Biophysics Program, Harvard University, Cambridge, Massachusetts; and "Harvard-MIT Division of Health Sciences and Technology,
Cambridge, Massachusetts



Networks

e Structure and dynamics of some biological
network can be studied experimentally

 Networks don’t look like random graphs,
more like power-law graphs.
- results of neutral evolution
- results of selection



