
1.3 Classical Genetics

The study of heredity began long before the molecular structure of DNA was understood.
Several thousand years of experience breeding animals and plants led, eventually, to the idea
that hereditary characteristics are passed along from parents to offspring in units, which are
termed genes.

Classical genetics states that some genes are dominant and others recessive. For example,
suppose we have a certain “heredity unit” symbolized as A1 whose presence in an individual
leads to brown eyes. A variant gene, A2, sometimes appears in the population; individuals
carrying it grow up with blue eyes. Humans, among other diploid organisms, carry two genes
for each trait, which are called alleles. According to the classical concept of dominance,
having one dominant allele outweighs the presence of a recessive one. Brown eyes turn out
to be dominant in humans, so a person with an A1A2 mix of alleles has brown irises, just
like one whose alleles read A1A1. Only an A2A2 individual develops blue irises.

1.3.1 Reproduction

The dynamics of a population depends upon births of new individuals, with possibly novel
mutations. To maintain a constant population size this must be accompanied by death of
members of previous generations. Even without mutations (µ1 = µ2 = 0 in the previous
example), reproduction by birth/death introduces stochasticity in the dynamics (say of the
proportion x1 of allele A1). To emphasize the role of reproduction, in this section we shall
initially neglect mutations, and follow changes in a preexisting diversity of alleles in the
population.

Hardy-Weinberg equilibrium: Within diploid organisms, sex and mating present addi-
tional complications, which we shall ignore by adapting a gene-centered perspective. To see
why this may be justified in at least some limit, consider an idealized population consist-
ing of very large number of individuals (N → ∞), where diploid organisms mate randomly
with no preference for phenotypic or geographic considerations.3 The initial population is
characterized by the proportions x11, x12, and x22 of the genotypes A1A1, A1A2 and A2A2,
with x11 + x12 + x22 = 1. The composition of the next generation is obtained by considering
all possible matings and their outcomes. For example, a pairing of two homozygotes A1A1

individuals occurs with probability x2
11, and leads to A1A1 offspring. However, a mating of

A1A1 with A1A2, with probability x11x12 may lead to either an A1A1 offspring, or an A1A2

offspring. Assuming no selective advantage for either such offspring, each happens with
probability of 1/2. Similarly, the pairing of two heterozygotes A1A2 may result in A1A1,
A1A2 and A2A2 with probabilities of 1/4, 1/2, and 1/4, respectively. Including all 9 (3× 3)

3The list of assumptions is extensive, including no mutations, migration, selection; and discrete gen-
erations in addition to random mating. The following argument also deals with an infinite population of
hermaphrodite, although male/female distinction can in principle be dealt with.
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pairings, we arrive at
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(1.29)

(Note that pairings of distinct genotypes involve an additional factor of two, from the de-
generacy in their order of selection.)

It is easy to check that the above results are completely equivalent to x′
1 = x1 and x′

2 = x2,
where x1 = x11 + x12/2 and x2 = x22 + x12/2 = 1 − x1 are the the proportions of alleles A1

and A2 in the diploid population. (For example, the first equation above can be recast as
x′
11 = x

′2
1 = x2

1.) Thus, within one generation the alleles are mixed by random reproduction
such that the proportion of the three possible genotypes merely reflects the proportion of
the allele in the entire population. This so-called Hardy-Weinberg equilibrium justifies the
gene-centered perspective as a theoretical limit. In fact, within a population of finite size N
the frequency x1 is not constant, but will change stochastically due to random reproduction
events as discussed next.

Fisher-Wright (binomial) process: Consider a population with two forms of an allele, say
A1 and A2 corresponding to blue or brown eye colors. The probability for a spontaneous
mutation to occur that changes the allele for eye color is extremely small, and effectively
µ1 = µ2 = 0 in Eq. (1.24). Yet the proportions of the two alleles in the population does
change from generation to generation. One reason is that some individuals do not reproduce
and leave no descendants, while others reproduce many times and have multiple descendants.
This is itself a stochastic process and the major source of rapid changes in allele proportions.
In principle, this effect also leads to variations in population size. To simplify computations,
we initially assume that the size of the population is fixed, and consider the effects of variation
later.

Continuing with the gene-centered perspective, consider the following, so called Fisher-
Wright process starting from the 2N alleles in a diploid population of size N . In the model of
binomial selection, the process or reproduction from one generation to the next is assumed to
be as follows: One allele is randomly selected, an exact copy is made for the next generation,
while the parent allele is returned to the original pool. This process is repeated 2N times
to produce the next generation. Let us assume that in the initial population of 2N alleles,
N1 = n = 2Nx1 are A1, and the remaining 2N − n are A2. The population at the next
generation may have m individuals with allele A1, with (transition) probability

Πmn =
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)

. (1.30)

The process leading to such probability is like reaching into a bag with n balls of blue color
and 2N − m balls of brown color, recording the color of the selected ball and throwing it
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back to the bag. After repeating such selection N times, the probability that the blue color
is recorded m times is given by the above binomial distribution. (The probability of getting
a blue ball in each trial is simply n/2N , and 1− n/2N for brown.) On average, the number
of alleles does not change, since ⟨m⟩ = n from the binomial distribution (i.e. ⟨x′

1⟩ = x1

consistent with Hardy-Weinberg equilibrium). However, there is now a range of possible
values of m; clearly the stochasticity arises since some balls can be picked up multiple times
(multiple descendants), while some balls are never picked (no offspring). The mathematical
consequences of Eq. (1.30) will be explored later on.

1.3.2 Heterozygosity

In the absence of mutations, random reproduction in a finite population inevitably leads
to a loss of diversity, known as genetic drift. This loss can be quantified by following the
evolution of the homozygosity measure, G =

∑k
i=1 x

2
i , where xi is the proportion of allele i

(out of k possibilities) in the population, and its complement, the heterozygosity H = 1−G.
For the case of k = 2, G = x2 + (1 − x)2, and H = 2x(1 − x). Let us follow the change
in Gt or Ht from generation t to t + 1 in the Fisher-Wright process. A new homozygote
diploid is generated either from duplication of the same chromosome, with probability 1/2N
for selecting the same chromosome twice, or from two separate chromosomes that share the
same allele, resulting in the recursion relations

Gt+1 =
1

2N
+

(

1−
1

2N

)

Gt , and Ht+1 = Ht

(

1−
1

2N

)

. (1.31)

Thus heterozygosity decays exponentially as

Ht = H0
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−t/τ , (1.32)

over a time (in generations) scale τ = 1/ ln(1− 1/2N) ≈ 2N .
The above calculating is easily generalized to allow for a population size N(t) varying with

generations. The loss of heterozygosity in each generation is related to size of its population,
generalizing Eq. (1.32) to
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The long-time decay of H is best captured by considering the logarithm,
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If there are large variations in population size, Neff with be close to the smallest value Nmin.
For example, when considering the population of humans of European/Asian descent, there
are indications that Neff ≈ 5, 000, presumably the size of the ancestor sub-population that
migrated out of Africa around 30,000 years ago.

Mutations are easily included in the above calculation, with the framework of the infinite
allele model. The latter model assumes that each mutation, at a rate µ leads to a new
allele, neglecting the possibility of mutations return mutations. (This is in fact a quite
good assumption if the locus under consideration is an entire gene.) The recursion relation
for homozygosity in Eq. (1.31) is now simply modified through multiplication by a factor
of (1 − µ)2, the requirement that neither of the selected chromosomes has duplicated in
reproduction, i.e.
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(Note that in the infinite allele model we do have to worry about appearance of homozygosity
due to either back mutation, or double mutations to the same allele.) In corresponding
recursion relation for heterozygosity, we shall drop terms of order µ2 and µ/N , arriving at
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+ 2µ(1−Ht) . (1.37)

The loss of diversity due to genetic drift is now counteracted by mutations; resulting in a
net change in heterozygosity of

∆Ht ≡ Ht+1 −Ht = −
Ht

2N
+ 2µ(1−Ht) .

The two effects are balanced in steady-state, with

H∗ ≈
4Nµ

4Nµ + 1
.

1.3.3 Selection

We assumed so far that the two alleles are completely equivalent, corresponding to neutral
evolution. It is likely that one allele is better in the sense of conferring a selective advantage
to the individual carrying it. The selective advantage of a genotype is parameterized through
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an associated fitness that quantifies its number of likely progeny (relative to other genotypes).
In our diploid binary allele example, we may associate fitness values of f11, f12 and f22 to
the three genotypes A1A1, A1A2 and A2A2, respectively. Indicating the proportion of allele
A1 in the population by x ≡ x1 = n/2N , the average fitness is given by

f(x) = x2f11 + 2x(1− x)f12 + (1− x)2f22 . (1.38)

The expected fractions of off-spring for the three genotypes are thus governed by the relative
fitness values of f11/f , f12/f and f22/f .

After one generation, the frequency x on average changes to
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The expected change in the proportion of the allele is thus given by

∆x ≡ ⟨x′⟩ − x =
1

f

[

f11x
2 + f12x(1− x)− fx

]

=
1

f

[

f11x
2 + f12x(1− x)− f11x

3 − 2f12x
2(1− x)− f22x(1 − x)2

]

=
1

f

[

f11x
2(1− x) + f12x(1− x)(1− 2x)− f22x(1 − x)2

]

=
x(1− x)

f

[

1

2

df(x)

dx

]

=
x(1− x)

2

d ln f

dx
. (1.40)

The above result, known as Wright’s equation implies that allele frequencies always change
so as to maximize the average fitness function f(x). A corresponding result holds for a
multi-loci situation with a corresponding fitness landscape f(x1, x2, · · · , xn).

For ease of computations, in the following sections we shall write the selective advantage
for allele A1 ias

∆x =
x(1− x)

2
s , (1.41)

typically ignoring any x dependence of s.
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