
1.5 Fitness Landscape

Members of a population with different genotypes are likely to reproduce (on average and
not due to randomness) at different rates. This selective advantage is conferred at the level of
the phenotype, not separate alleles, and quantified by a fitness parameter that indicates the
expected number of off-spring in the next generation (after averaging and normalization).
To be precise, consider a population with a discrete number of phenotypes, labelled by
α = 1, 2, · · · , k. The proportion of each phenotype (or quasi-species) in the population is
labelled with xα, with

∑k
α=1 xα = 1, and to each quasi-species we associate a fitness fα. The

expected number of off-springs of phenotype α is proportional to xα (number of reproducing
individuals) and fα (their relative fitness). After proper normalization, the proportion of
quasi-species α in the next generation is given by

x′
α =

fα
f
xα , (1.79)

where division by the mean-fitness
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k
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xαfα , (1.80)

ensures that
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α=1 x
′
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Note that changes in proportions are related to the mean fitness by

x′
α − xα =

xα

f

(

fα − f
)

=
xα

f

∂f

∂xα

∣

∣

∣

∣

∗

= xα
∂ ln f

∂xα

∣

∣

∣

∣

∗

. (1.81)

Note that, ∂f
∂xα

|∗ = (fα−f), indicating that the partial derivative is taken under the condition
∑k

α=1 xα = 1; the additional (Lagrange multiplier) f ensures this constraint. Equation (1.81)
indicates that the proportions xα change so as to increase the mean-fitness of the population;
the gradient descent is somewhat reminiscent of the motion of an over-damped particle in
a landscape of potential energy − ln f({xα}). The change in fitness from one generation to
next is given by
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where the last equality follows from
∑

α xα

(

fα − f
)

= 0. In the same way that we defined
the mean fitness over the population, we can define its variance as

varf =
k
∑

α=1

xα

(

fα − f
)2

, (1.83)
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in terms of which the change in fitness is given by

f
′
− f =

varf

f
. (1.84)

In the 1930’s, the biologist Ronald Fisher posited that “The rate of increase in fitness of
any organism at any time is equal to its genetic variance in fitness at that time,” known as
Fisher’s fundamental theorem of natural selection.

Let us again consider a diploid population with variability of two alleles A1 and A2 at a
single locus. The three phenotypes A1A1, A1A2 and A2A2 occur in proportions x11, x12 and
x22, and are assigned fitness values f11, f12 and f22. Assuming Hardy–Weinberg equilibrium,
the three proportions can be related to the frequency x of allele A1 in the population by
x11 = x2, x12 = 2x(1 − x) and x22 = (1 − x)2. The mean fitness can now be expressed in
terms of the single parameter x as

f(x) = x2f11 + 2x(1− x)f12 + (1− x)2f22 . (1.85)

The expected proportions of off-springs for the three genotypes are thus x2f11/f , 2x(1−
x)f12/f and (1− x)2f22/f . Thus in the next generation, the frequency x changes to

x′ =
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x2 +
1

2

f12
f

2x(1− x) . (1.86)

The change in the proportion of the allele A1 is thus given by

∆x ≡ x′ − x =
1

f

[

f11x
2 + f12x(1 − x)− fx

]

=
1

f

[

f11x
2 + f12x(1 − x)− f11x

3 − 2f12x
2(1− x)− f22x(1− x)2

]

=
1

f

[

f11x
2(1− x) + f12x(1− x)(1− 2x)− f22x(1− x)2

]

=
x(1− x)

f

[

1

2

df(x)

dx

]

=
x(1− x)

2

d ln f

dx
. (1.87)

We find that in this case, even from the perspective of the allele, the population changes so
as to maximize the mean fitness function, or its logarithm ln f(x). In the above context, this
result is known as Wright’s equation.

There is some inconsistency is using Eq. (1.87) to describe the change in allele frequency
in subsequent generations. The reason is that the derivation started with the assumption
of Hardy–Weinberg equilibrium, requiring that the three phenotypes occur in proportions
x11 = x2, x12 = 2x(1− x) and x22 = (1− x)2. However, the proportions of off-springs, x′

11 =
x2f11/f , x′

12 = 2x(1− x)f12/f and x′
22 = (1− x)2f22/f , do not satisfy the Hardy–Weinberg
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condition, except in the special case of f11f22 = f 2
12. A way to recover the result is two posit

a two step generation cycle: The first step of reproduction/mating follows the Fisher–Wright
process in which individuals are selected at random without any preference. This ensures
that the chromosomes are mixed in the new population of ‘infants,’ satisfying the Hardy–
Weinberg ratios. Selection acts in the maturation of ‘infants’ to ‘adults,’ with the fractions
of surviving adults now proportioned as x2f11/f , 2x(1 − x)f12/f and (1 − x)2f22/f . The
subsequent random mating/reproduction of ‘adults’ will then ensure that the proportions
of the ‘infant’ population satisfy x′

11 = x′2, x′
12 = 2x′(1 − x′) and x′

22 = (1 − x′)2, with x′

given by Eq. (1.86). The need to invoke a two-step reproduction process renders the Wright
equation somewhat less satisfactory than Eq. (1.81). Nevertheless, it is commonly used in
discussion of different forms of selection, as discussed next.

The relative fitness values of the above diploid phenotypes are typically labelled as follows:
The “wild-type” A2A2 is assigned fitness f22 = 1 − s, while the homozygote mutant A1A1

has fitness f11 = 1. The selection coefficient s quantifies the increased (if s > 0) or decreased
(when s < 0) fitness of this mutant. The fitness of the heterozygote A1A2 is indicated by
f12 = (1− hs), leading to the mean fitness function

f = x2 + 2x(1− x)(1− hs) + (1− x)2(1− s) = (1− s) + 2s(1− h)x+ s(2h− 1)x2 . (1.88)

Without loss of generality, we can assume s > 0, so that the double mutant (A1A1 for
x = 1) is more fit, and consider the role played by the parameter h. For h = 1/2, the fitness
function varies linearly with x, with each copy of the allele conferring an additive advantage
(of s/2) to fitness. Following Eq. (1.87), the population advances monotonically towards
the more fit phenotype. Similar monotonic increase of f(x) appears for all 0 ≤ h ≤ 1 (as
the fitness of heterozygote is intermediate between the homozygotes), and this behavior is
dubbed directional selection. For the limiting values of h = 0 and h = 1, the heterozygote
has the same fitness as one of the homozygotes, corresponding to cases where A2 is dominant
or recessive, respectively.

Interesting, still parabolic, fitness landscapes occur when h is outside the interval [0,1].
For h < 0, the heterozygote is more fit than either homozygote, a condition referred to
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as overdominance. The mean fitness now displays a maximum at an intermediate value of
x∗ = (1−h)/(1−2h) ≥ 1/2. In the resulting balanced selection, populations on either side of
x∗ evolve to this equilibrium value; the higher fitness of the heterozygote ensures that both
alleles persist in steady state. An example of such heterozygote dominance is provided by
the hereditary disease sickle–cell anemia, which causes deformation of red blood cells. While
the double mutant is unfit, the single mutant has some selective advantage as the disease
also confers immunity to malaria. It is worthwhile to note that the steady-state at finite x∗

violates the result in Eq. (1.84). As no further change in fitness can occur in steady state,
Eq. (1.84) implies that the variance of fitness over the population should vanish. A vanishing
variance requires identical fitness for the entire population, such as when only one phenotype
is present. However, the three phenotypes present at x∗ manifestly have different fitness,
leading to a positive variance. The resolution of this quandary is that, as discussed above,
despite its superficial similarity to Eq. (1.81), Eq. (1.87) describes a different (two-step)
reproduction process which is not subject to the same constraints.

Conversely, when h < 0, the heterozygote is less fit than either homozygote (underdomi-
nance), the mean fitness encounters a minimum at x∗. In such, so-called disruptive selection,
homozygotes are attractors of the population dynamics, and rare fluctuations are needed for
the fixation of the more fit phenotype to occur (when starting from the less fit wild-type).
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The role of fluctuations can be studied with the aid of the forward Kolmogorov Eq. (1.49).
Including the contribution from fitness in Eq. (1.87), the drift velocity is

v(x) = µ1(1− x)− µ2x+
x(1− x)

2

d ln f

dx
, (1.89)

with D(x) = x(1−x)/(4N) as before. The calculation of the steady-state profile in Eq. (1.77)
is now modified to

logD(x)p∗(x) =
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resulting in

p∗(x) ∝
1

x(1− x)
× x4Nµ1 × (1− x)4Nµ2 × f(x)2N . (1.90)

The fitness profile appears as a multiplicative factor in the steady-state profile, raised to a
large power of 2N , greatly increasing the proportion of fit phenotypes in the population. To
connect to the previous discussion of auto-catylitic reactions, consider the case of h = 1/2,
and s≪ 1, where f = 1− s+ sx ≈ exp(−s+ sx), leading to the result in Eq. (1.77). Indeed
the role of selection in population genetics is frequently described by the single parameter s,
such that

∆x =
x(1− x)

2
s . (1.91)

We shall not consider more complex situations in which the fitness values fα (and hence s)
are themselves functions of the composition {xα}.
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