
1.6 Backward Kolmogorov equation

When mutations are less likely, genetic drift dominates and the steady state distributions are
peaked at x = 0 and 1. In the limit of µ1 = 0 (or µ2 = 0), Eq. (1.77) no longer corresponds
to a well-defined probability distribution, as the 1/x (or 1/(1−x)) divergence close to x = 0
(or x = 1) precludes normalization. This is the mathematical signal that our expression
for the steady state is no longer valid in this limit. Indeed, in the absence of mutations a
homogeneous population (all individuals A1 or A2) cannot change through reproduction. In
the parlance of dynamics, homogeneous populations correspond to absorbing states, where
transitions are possible into the state but not away from it. In the presence of a single
absorbing state, the steady state probability is one at this state, and zero for all other states.
If there is more than one absorbing state, the steady state probability will be proportioned
(split) among them.

In the absence of mutations, our models of reproducing populations have two absorbing
states at x = 0 and x = 1. At long times, a population of fixed number either evolves to
x = 0 with probability Π∗

0, or to x = 1 with probability Π∗
1 = 1 − Π∗

0. The value of Π∗
0

depends on the initial composition of the population that we shall denote by 0 < y < 1, i.e.
p(x, t = 0) = δ(x − y). Starting from this initial condition, we can follow the probability
distribution p(x, t) via the forward Kolmogorov equation (1.49). For purposes of finding the
long-time behavior with absorbing states it is actually more convenient to express this as
a conditional probability p(x, t|y) that starting from a state y at t = 0, we move to state
x at time t. Note that in any realization the variable x(t) evolves from one time step to
the next following the transition rates, but irrespective of its previous history. This type
of process with no memory is called Markovian, after the Russian mathematician Andrey
Andreyevich Markov (1856-1922). We can use this property to construct evolution equations
for the probability by focusing on the change of position for the last step (as we did before
in deriving Eq. (1.49)), or for the first step. From the latter perspective, we can decompose
the conditional probability after a time interval t+ dt as

p(x, t + dt|y) =

∫

dδy R(δy, y)dt× p(x, t|y + δy) +

(

1−

∫

dδy R(δy, y)dt

)

p(x, t|y) , (1.92)
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where we employ the same parameterization of the reaction rates as in Eq. (1.44), with δy
denoting the change in position. The above equation merely states that the probability to
arrive at x from y in time t+ dt is the same as that of first moving away from y by δy in the
initial interval of dt, and then proceeding from y + δy to x in the remaining time t [the first
term in Eq. (1.92)]. The second term corresponds to staying in place in the initial interval
dt, and taking a trajectory that arrives at x in the subsequent time interval t. (Naturally
we have to integrate over all allowed intermediate positions.) Expanding the left hand side
of Eq. (1.92) in dt, and the right side in δy (assuming dominance of local changes), gives

p(x, t|y) + dt
∂p(x, t|y)

∂t
= p(x, t|y) +

(
∫

dδy R(δy, y)dt−
∫

dδy R(δy, y)dt

)

p(x, t|y)

+

(
∫

dδy δyR(δy, y)dt

)

∂p(x, t|y)

∂y

+
1

2

(
∫

dδy δ
2
yR(δy, y)dt

)

∂2p(x, t|y)
∂y2

+ · · · . (1.93)

Using the definitions of drift and diffusion coefficients from Eqs. (1.50) and (1.51), we obtain

∂p(x, t|y)

∂t
= v(y)

∂p

∂y
+D(y)

∂2p

∂y2
, (1.94)

which is known as the backward Kolmogorov equation. If the drift velocity and the diffusion
coefficient are independent of position, the forward and backward equations are the same–
more generally one is the adjoint of the other.6

1.6.1 Fixation probability

Let us consider a general system with multiple absorbing states. Denote by Π∗(xa, y), the
probability that a starting composition y is at long time fixed to the absorbing state at xa,
i.e. Π(xa, y) = limt→∞ p(xa, t|y). For the case of two possible alleles, we have two such states
with Π∗

0(y) ≡ Π∗(0, y) and Π∗
1(y) ≡ Π∗(1, y), but we shall keep the more general notation

for the time being. The functions Π∗(xa, y) must correspond to steady state solutions of
Eq. (1.94), and thus obey

v(y)
dΠ∗(y)

dy
+D(y)

d2Π∗(y)

dy2
= 0 . (1.96)

After rearranging the above equation to

Π∗(y)′′

Π∗(y)′
=

d

dy
logΠ∗(y)′ = −

v(y)

D(y)
, (1.97)

6Two operators F and B are adjoint if for any pair of functions f(x) and g(x)

⟨g|Ff⟩ ≡

∫

dxg(x)Ff(x) =

∫

dxf(x)Bg(x) = ⟨Bg|f⟩ . (1.95)

Using integrations by parts, it can be checked that the differential operations of the forward and backward
Kolmogorov equation satisfy this property.
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Fixation probability Π∗
1(y) for different selection parameters s.

we can integrate it to

logΠ∗(y)′ = −

∫ y

dy′
v(y′)

D(y′)
= − ln (D(y′)p∗(y)) , (1.98)

and obtain

Π∗(y)′ ∝ −
∫ y

dy′[D(y′)p∗(y′)]−1 . (1.99)

The result of the above integration is related to an intermediate step in calculation of the
steady state solution p∗ of the forward Kolmogorov equation in Eq. (1.74). However, as we
noted already, in the context of absorbing states the function p∗ is not normalizable and thus
cannot be regarded as a probability. Nonetheless, we can choose to express the results in
terms of this function. For example, the probability of fixation, i.e. Π∗

1(y) is obtained with
the boundary conditions Π∗

1(0) = 0 and Π∗
1(1) = 1, as

Π∗
1(y) =

∫ y

0 dy′[D(y)p∗(y′)]−1

∫ 1

0 dy′[D(y)p∗(y′)]−1
. (1.100)

When there is selection, but no mutation, Eq. (1.68) implies

logΠ∗(y)′ = −
∫ y

dy′
v(y′)

D(y′)
= −2

∫ y

(Ns) = −2Nsy + constant. (1.101)

Integrating Π∗(y)′ and adjusting the constants of proportionality by the boundary conditions
Π∗

1(0) = 0 and Π∗
1(1) = 1, then leads to the fixation probability of

Π∗
1(y) =

1− e−2Nsy

1− e−2Ns
. (1.102)

This result is known as Haldane’s equation. The fixation probability of a neutral allele is
obtained from the above expression in the limit of s→ 0 as Π∗

1(y) = y.
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When a mutation first appears in a diploid population, it is present in only one copy and
hence y = 1/(2N). The probability that this mutation is fixed is Π∗

1 = 1/(2N) as long as it
is approximately neutral (if 2sN ≪ 1). If it is advantageous (2sN ≫ 1) it will be fixed with
probability Π∗

1 = 1− e−s irrespective of the population size! If it is deleterious (2sN ≪ −1)
it will have a very hard time getting fixed, with a probability that decays with population
size as Π∗

1 = e−(2N−1)|s|. The probability of loss of the mutation is simply Π∗
0 = 1− Π∗

1.

1.6.2 Mean times to fixation/loss

When there is an absorbing state in the dynamics, we can ask how long it takes for the
process to terminate at such a state. In the context of random walks, this is known as
the first passage time, and can be visualized as the time it takes for a random walker to
be captured by a trap. Actually, since the process is stochastic, the time to fixation (or
loss) is itself a random quantity with a probability distribution. Here we shall compute an
easier quantity, the mean of this distribution, as an indicator of a typical time scale for
fixation/loss.

Let us consider an absorbing state at xa, and the difference p(xa, t+ dt|y)− p(xa, t|y) =
dt∂p(xa, t|y)/∂t. Clearly the probability to be at xa only changes due to an absorption
event, and thus ∂p(xa, t|y)/∂t is proportional to the probability density function (PDF) for
fixation at time t. The conditional PDF that the process terminates at xa should be properly
normalized to unity, which requires division by

∫ ∞

0

dt
∂p(xa, t|y)

∂t
= p(xa,∞|y)− p(xa, 0|y) = Π∗(xa, y)− 0 = Π∗(xa, y) . (1.103)

Thus the properly normalized conditional PDF for fixation at time t at xa is

pa(t|y) =
1

Π∗(xa, y)

∂p(xa, t|y)

∂t
. (1.104)

The mean fixation time is now computed from

⟨τ(y)⟩a =

∫ ∞

0

dt t pa(t|y) =
1

Π∗(xa, y)

∫ ∞

0

dt t
∂p(xa, t|y)

∂t
. (1.105)

Following Kimura and Ohta (1968)7, we first examine the numerator of the above ex-
pression, defined as

Ta(y) = lim
T→∞

∫ T

0

dt t
∂p(xa, t|y)

∂t
. (1.106)

(Rewriting limT→∞

∫ T
0 rather than simply

∫∞
0 is for later convenience.) We can integrate

this equation by parts to get

Ta(y) = lim
T→∞

[

Tp(xa, T |y)−

∫ T

0

dt p(xa, t|y)

]

= lim
T→∞

TΠ∗(xa, y)−

∫ ∞

0

dt p(xa, t|y) . (1.107)

7M. Kimura and T. Ohta, Genetics 61, 763 (1969).
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Let us denote the operations involved on the right-hand side of the backward Kolmogorov
equation by the short-hand By, i.e.

ByF (y) ≡ v(y)
∂F (y)

∂y
+D(y)

∂2F (y)

∂y2
. (1.108)

Acting with By on both sides of Eq. (1.107), we find

ByTa(y) = lim
T→∞

TByΠ
∗(xa, y)−

∫ ∞

0

dtByp(xa, t|y) . (1.109)

But ByΠ∗(xa, y) = 0 according to Eq. (1.96), while Byp(xa, t|y) = ∂p(xa, t|y)/∂t from
Eq. (1.94). Integrating the latter over time leads to

ByTa(y) = −p(xa,∞|y) = −Π∗(xa, y) . (1.110)

For example, let us consider a population with no selection (s = 0), for which the
probability to lose a mutation is Π∗

0 = (1− y). In this case, Eq. (1.110) reduces to

y(1− y)

4N

∂2T0

∂y2
= −(1− y), ⇒

∂2T0

∂y2
= −

4N

y
. (1.111)

After two integrations we obtains

T0(y) = −4Ny (ln y − 1) + c1y + c2 = −4Ny ln y , (1.112)

where the constants of integration are set by the boundary conditions T0(0) = T0(1) = 0,
which follow from Eq. (1.106). From Eq. (1.105), we then obtain the mean time to loss of a
mutation as

⟨τ(y)⟩0 = −4N
y ln y

1− y
. (1.113)

A single mutation appearing in a diploid population corresponds to y = 1/(2N), for which
the mean number of generations to loss is ⟨τ(y)⟩0 ≈ 2 ln(2N). The mean time to fixation is
obtained simply by replacing y with (1− y) in Eq. (1.113) as

⟨τ(y)⟩1 = −4N
(1− y) ln(1− y)

y
. (1.114)

The mean time for fixation of a newly appearing mutation (y = 1/(2N)) is thus ⟨τ(y)⟩1 ≈
(4N).

We can also examine the amount of time that the mutation survives in the population.
The net probability that the mutation is still present at time t is

S(t|y) =
∫ 1−

0+
dxp(x, t|y) , (1.115)

where the integrations exclude the absorbing points at 0 and 1.
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Conversely, the PDF that the mutation disappears (by loss or fixation) at time t is

p×(t|y) = −
dS(t|y)

dt
= −

∫ 1−

0+
dx

∂p(x, t|y)

∂t
. (1.116)

(Note that the above PDF is properly normalized as S(∞) = 0, while S(0) = 1.) The mean
survival time is thus given by

⟨τ(y)⟩× = −
∫ ∞

0

dt t

∫ 1−

0+
dx

∂p(x, t|y)

∂t
=

∫ 1−

0+
dx

∫ ∞

0

dt p(x, t|y) , (1.117)

where we have performed integration by parts and noted that the boundary terms are zero.
Applying the backward Kolmogorov operator to both sides of the above equation gives

By ⟨τ(y)⟩× =

∫ 1−

0+
dx

∫ ∞

0

dtByp(x, t|y)

=

∫ 1−

0+
dx

∫ ∞

0

dt
∂p(x, t|y)

∂t
= S(∞|y)− S(0|y) = −1 . (1.118)

In the absence of selection, we obtain

y(1− y)

4N

∂2 ⟨τ(y)⟩×
∂y2

= −1 ⇒
∂2 ⟨τ(y)⟩×

∂y2
= −4N

(

1

y
+

1

1− y

)

. (1.119)

After two integrations we obtains

⟨τ(y)⟩× = −4N [y ln y + (1− y) ln(1− y)] , (1.120)

where the constants of integration are set by the boundary conditions ⟨τ(0)⟩× = ⟨τ(1)⟩× = 0.
Note the interesting relation

⟨τ(y)⟩× = Π∗
0(y) ⟨τ(y)⟩0 + Π∗

1(y) ⟨τ(y)⟩1 , (1.121)

which is easily generalized to any number of absorbing states.
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By adding and subtracting the contribution of absorbing sites to the positional integral
in Eq. (1.117), we obtain

⟨τ(y)⟩× = −

∫ ∞

0

dt t

[

∫

dx
∂p(x, t|y)

∂t
−
∑

a

∂p(xa, t|y)
∂t

]

. (1.122)

By taking the time derivative over t outside the integration over x, we get

⟨τ(y)⟩× = −

∫ ∞

0

dt t

[

∂

∂t

(
∫

dx p(x, t|y)

)

+
∑

a

∂p(xa, t|y)
∂t

]

. (1.123)

The first term is zero since the integral over x is always unity, and from Eq. (1.105) we obtain

⟨τ(y)⟩× =
∑

a

Π∗(xa, y) ⟨τ(y)⟩a . (1.124)

Similarly, Eq. (1.116) can be generalized in the presence of several absorbing states to

p×(t|y) = −
dS(t|y)

dt
= −

∫

dx

[

∂p(x, t|y)

∂t
−
∑

a

∂p(xa, t|y)

∂t

]

. (1.125)

Using the backward Kolmogorov equation, we can replace ∂p/∂t with Byp, and the operator
By can be taken outside the integral to give

dS(t|y)
dt

= By

∫

dx

[

p(x, t|y)−
∑

a

p(xa, t|y)

]

= ByS(t|y) . (1.126)

Thus the survival probability itself satisfies the backward Kolmogorov equation; a result that
could have been obtained by directly integrating Eq. (1.94). We can also immediately verify
the expected solution

S(t|y) = 1−
∑

a

Πa(t|y) , (1.127)

where Πa(t|y) is the probability of fixation at xa by time t.
In the absence of drift, Eq. (1.126) reduces to the form,

dS(t|y)
dt

=
y(1− y)

4N

∂2S(t|y)
∂y2

. (1.128)

It is easy to verify that this equation admits a solution of the form

S(t|y) ∝ y(1− y) exp

(

−
t

2N

)

. (1.129)

This solution represents the asymptotic long-time behavior of the survival probability: a
small fraction of populations with starting composition y survive at time t, a proportion that
decays exponentially over the time-scale 2N . Note that the forward Kolmogorov equation
(with no drift) admits a solution at long times of the form p(x, t) ∝ exp(−t/2N) (independent
of x). Thus the surviving populations at long time are equally likely to occupy any value of
x, while they originate preferentially from y ∼ 1/2.
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1.6.3 Steady States, Revisited

Let us reexamine the Master equation and its long-time behavior in view of what we have
learned through the forward and backward Kolmogorov equations. As noted in Eq. (1.9),
the vector of probabilities evolves in time as

p⃗(t+ 1) =←→π p⃗(t) =←→π t+1p⃗(0) . (1.130)

Borrowing the Dirac notation from quantum mechanics, we can now define

p(x, t|y) ≡< x|←→π t|y > ; (1.131)

the probability that an initial condition consisting entirely of state y (pn(0) = δn,y in the
discrete form) evolves to state x after t generations. The Markovian property, ←→π t+1 =
←→π ←→π t =←→π t←→π , allows us to write the recursion relations

p(x, t + 1|y) =
∑

x′

Πx,x′p(x′, t|y) =
∑

y′

p(x, t|y′)Πy′,y , (1.132)

corresponding respectively to discrete limits of the forward and backward Kolmogorov equa-
tions. Written in this form, it becomes clear that the forward and backward Kolmogorov
operators correspond to conjugate forms of the same matrix, and as such must have the
same eigenvalues (corresponding to inverse decay times).

Using an eigenvalue decomposition, the solution to Eq. (1.132) can be written as

p(x, t|y) =
∑

α

< x|rα > λt
α < lα|y > , (1.133)

where |rα > and < lα| are the right (column) and left (row) eigenvectors of the matrix ←→π
respectively. The long time behavior is controlled by the left/right eigenvectors with the
largest eigenvalue. Earlier, we invoked the Perron–Frobenius theorem to conclude a unique
largest eigenvector with unit eigenvalue, leading to

lim
t→∞

p(x, t|y) =< x|r1 >< l1|y >= p∗(x) , (1.134)

setting < x|r1 >= p∗(x), and noting that < l1|y > is independent of y (corresponding
to the row eigenvectors with all equal elements, as required by Eq. (1.10).) However, the
transition probability matrix for random mating does not satisfy the conditions for the
Perron–Frobenius theorem as the pure states (for x = 0 and x = 2N) are disconnected
from the remaining states. The matrix now admits two right eigenvectors of unit eigenvalue,
(1, 0, 0, · · · ) and (· · · , 0, 0, 1) corresponding to occupation of these absorbing states. Note
that the right eigenvectors are now trivial, and denoting the corresponding (no longer con-
stant) left eigenvectors by < l0|y >≡ Π∗

0(y) and < l1|y >≡ Π∗
1(y),

8 we obtain the steady-state

lim
t→∞

p(x, t|y) = δx,0Π
∗
0(y) + δx,2NΠ

∗
1(y) . (1.135)

8The choice of appropriate basis vectors (< l0|y >,< l1|y >) in the degenerate two-dimensional eigenspace
is guided by the following: < l1|y > must be zero for y = 0, while < l0|y >= 0 for y = 2N .
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More generally, we can imagine situations with a number of distinct basins of attraction,
labelled by µ = 1, 2, · · · , q. The eigenvalue unity is now q-fold degenerate; the corresponding
eigen-space composed of q disconnected basins, with the long-time limit of

lim
t→∞

p(x, t|y) =
q
∑

µ=1

p∗µ(x ∈ µ)Π∗
µ(y) , (1.136)

with x ∈ µ indicating the set of points in basin of attraction µ, with corresponding steady-
states p∗µ. The factors Π∗

µ(y) determine how the outcome of the starting state y is proba-
bilistically partitioned amongst the basins of attraction.
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