1.7 Population genetics of Cancer

In this section, the general results obtained so far are used to develop a simple model for pro-
gression of cancer. The model relies on two results obtained before. The first is Haldane’s’s
result for fixation of a newly acquired mutation, obtained with y = 1/(2N) in Eq. (77),
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In the following, we shall distinguish between three classes of mutations: (i) Near neutral
mutations with |s| < 1/(2N), for which the fixation probability is 1/(2V), irrespective of
whether the mutation is advantageous or deleterious. (ii) Weakly advantageous mutations
with 1 > s> 1/(2N) in which case IIf ~ 1 —e™* ~ s. (iii) Even weakly deleterious
mutations with —1 < s < —1/(2N) are efficiently removed from them population, as the
fixation probability is exponentially small (~ e=2"ls]).

Another needed ingredient is rate of near neutral evolution across the entire gene/genome.
The initial mutation can appear in any of the 2N chromosomes at rate u for a total rate of
2Np. As a near neutral mutation is fixed with probability of 1/(2N), the rate at which such
mutations are fixed in the population is itself i, independent of population size! However,
that what constitutes a near neutral mutation depends on the size of the population, and is
different for say human (N.;; ~ 10® — 10*) and mouse (N.s; ~ 10°).

1.7.1 Hallmarks of Cancer

Cancer tumors arise from the uncontrolled division and growth of cells. The important steps
for how normal cells transform to such malignant form are summarized in the classic paper:
Hallmarks of Cancer: The Next Generation, D. Hanahan and R. Weinberg, Cell 144(5)
646-74 (2011). Some important steps include uncontrolled division, evasion of apoptosis
(programmed cell death), and finally invasion and metastasis. Mutations that can initiate
these modified cell behaviors include: (i) Single site mutations causing changes in proteins;
(77) Chromosomal rearrangements, such as elimination or duplication of a section of DNA,
or even scrambling of different parts of DNA; and (%ii) Mutations that do not affect genes,
but modify their level of expression or activity.

The genes implicated in cancer can be roughly separated into two categories: Oncogenes
which are typically expressed at high levels in tumor cells (even when present as a single
copy); and tumor suppressors whose inactivation is implicated in disease, such as the p53
protein involved in DNA repair. For the purposes of the model to be developed shortly, both
types will be denoted as drivers, in contrast to passenger mutations, whose appearance does
not advance cancer tumors. Of the order of 10? such genes have been identified from clinical
studies.

Mutation rates are abnormally high in caner cells. Let us recall the earlier estimate
of p ~ 2 —5 x 1078 per basepair in each human generation. Given the roughly 100 cell

9As the numbers refer to the population bottleneck, the argument applies to fixation of mutations ap-
pearing prior to the bottleneck. A different reasoning applies to exponentially increasing populations.
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divisions per generation from parent to progeny (in the germline, oocyte/sperm), this suggest
i~ 1072—1071% per basepair in a healthy cell division. For cancer cells this number increases
by roughly a factor of 100 to p ~ 1079 —107%. This high mutation rate also creates passenger
mutations which are not advantageous to cancer.'’ In the following, we develop a mode for
the competition between driver and passenger mutations.

1.7.2 Model of Cancer progression

The simple model focuses on single basepair mutations, assumed to occur randomly (and
independently) across the entire genome. The driver target space Ty, in units of basepairs, is
defined as the set of DNA sites whose mutation favors progression of cancer. Since there are
roughly 100 driver genes, with 10 to 50 vulnerable sites per gene, we estimate Ty ~ 5 x 103.
The corresponding target space 7T}, for passenger mutations should be much larger, directed
against the many genes needed for proper functioning of healthy cells. Assuming that there
are of the order of 10* actively expressed genes within a cell, each with around 10% possible
sites for (non-synonymous) mutations, leads to an estimate of 7, ~ 10° — 107 basepairs.
The rates at which the two types of mutations appear in the cell line are ug = Ty X p, and
tp = T}, X i, respectively.

The appearance of mutations modifies the fitness (reproductive capacity) of the cell,
which we shall denote by f(ng4,n,) in the presence of ny4 driver and n, passanger mutations.
We shall posit that each driver mutation independently increases fitness by a factor of (14s4),
while each passenger mutation decreases it by (1—s,) ~ 1/(1+s,), for an overall contribution
of f(ng,ny) oc (1 + s4)"/(1 + s,)"."1 We shall further assume s; > |s,| > 0, i.e. the
(frequent) passenger mutations are nearly neutral, while the (rare) driver mutations are
advantageous. Indeed, recent experiments suggest sq ~ 1071
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A commonly used model to describe the increase in the number of tumor cells (or any

0Density of mutations is highly non-uniform across the genome, and appears to correlate with expression
(more highly expressed regions have more mutations). As a very rough estimate, there are between 30-300
non-synonymous mutations in a typical cancer, out of which 2-5 are estimated to be within driver genes.

1 The combined effect of distinct mutations on fitness is termed epistasis. The model used here corresponds
to multiplicative epistasis.
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other growing population) is the logistic equation

dN N

%—BN—D(N)N—TN (1_K> : (1.145)
Cells initially grow exponentially at a rate r = B (birth rate), which is then limited by
the competition for resources captured by the (death) rate D(N) = rN/K. The growing
population then saturates at lim; ,, V() = K, known as the carrying capacity. In fact, for
our purposes, we only use the result that the saturation value is proportional to the birth
rate B. For the model of cancer cells, we shall assume a (normalized) mutation-dependent

birth rate of B(ng,n,) = (1 + sq4)™ /(1 + s,)™, but a mutation-independent death rate of
D = N/K. Within this model, the cell line will grow to a maximum size of
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For the tumor to continue to grow, additional mutations have to occur. The appearance
of an extra mutation leads to a new cell line, which (in the absence of competition for

resources with previous cell lines) grows to a maximum size of N(ng+1,n,) or N(ng,n,+1),
such that

AN, = N(ng+1,n,) — N(ng,n,) = N(ng,ny)Sa,
AN, = N(ng,n,+1) — N(ng,n,) =~ —N(ng,n,)sp . (1.147)

Such incremental growth (assuming that the time for fixation is faster than that for appear-
ance of a new mutation) can either eventually stop (if fitness continues to decrease with

accumulation of passenger mutations), or grow unbounded (if driver mutations dominate).
As an indicator of the possible outcomes, we examine the average “velocity”

AN
v = <E> = vy — vy = ANsRy+ AN, R, = N(ng,n,)(sqRa — spR,) (1.148)

where R; and R, are the rates at which new driver or passenger mutations are fixed in
the population, each being a product of the rate of appearance of the mutation and the
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probability of its fixation. The probability of a new driver mutation in a population of
size N = N(ng,n,) is uTyN, where T, is the target size for driver mutations. Similarly a
passenger mutation occurs with probability p7, N, where T, is the corresponding target size.
(It is reasonable to expect T, > Tj.)

An ‘advantageous’ mutation is fixed with probability 1 — e™% ~ s4, leading to Ry =
uTyNsq.'? Conversely, the near neutral passenger mutations are fixed with probability 1/N,
while appearing at rate p7,N, resulting in R, = puT,N/N = uT,. Putting these results in
Eq.(?7) gives

v = puTyN?s; — uT,Ns,. (1.149)
The borderline between regression and progression of the tumor occurs when v(N*) = 0,
at
Spl;
N*=-L2F 1.150
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There is an effective barrier for tumor progression at small sizes due to accumulation of
passengers. We shall use the following estimates: s, ~ 1072 —10"*, s, ~ 0.1, T, = 1-5x 103,
and T, ~ 10— 107, leading to N* ~ 102 —10? cells. Assuming that these cells grow on top of
a substrate (as is the case in melanoma), this number corresponds to a size of around Imm.
Oncologists typically consider biopsies for growths larger than around half a centimeter.

Note that the mutation rate p cancels out in the above estimate for N*. It is, however,
relevant to the long time fate of tumors grown beyond this critical size. To arrive at this
conclusion, let us first consider the balance of mutation and selection in a simple model
of two alleles, mutating to each other at the same rate p. The wild-type and mutant are
assumed to have fitness values of 1 — s and 1, respectively. At a frequency x of the fitter
mutants, the mean fitness of the population is f = z + (1 — x)(1 — s). The frequency of the
mutant in the subsequent generation is given by

s p(l— :c_)(l —3) N (1— u_):r; x1 p(l—2)(1—s5)+ (1 —pz ; (1.151)
7 7 e+ (—a)(1—s)

the first term arising from mutation of wild-types and the second from un-mutated mutants.
The steady state solution occurs for 2’ = x = x,, where

sw? 4+ 20— s(1+ p)] 2oo — (1 —5)> = 0. (1.152)

In the limit, where 4 and s are much smaller than one, but of the same order, after dropping

terms, we arrive at
rw=1-2 with Fo=1-pu. (1.153)
s
This surprising result, that the average fitness in steady state does not depend on the gain
in fitness s, is known as the Muller—Haldane principle. This conclusion remains true in a

more general model in which at each generation any number of weakly deleterious mutations

12The use of results based on “Fisher—-Wright” binomial selection is certainly debatable for cancer cells.
An alternative Moran process leads to a fixation rate of s/(1 + s), which is similar for small s.
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can appear, with fitness cost of (1 — s)* ~ 1 — sk for 0 < s < 1. For p < 1, it is
reasonable to assume that the probability of appearance of k£ mutations in each generation is
Gaussian distributed with mean p. It can then be shown (see problems) that the balance of
mutations and selections results in steady state, where the fraction of cells with k£ mutations
in the population is Poisson distributed, i.e. zj, = e=* (k)" /k!, with (k) = u/s. The average
fitness in this steady state is again (to lowest orderin s) foo = 1—s >, kpy = 1—s (k) = 1—p.

Let us apply the above result to our model of passengers and drivers: Given the target
space of passengers, their effective mutation rate is u7T),, leading to an average (steady-
state) number (k) = 1 T,/s,, and a corresponding overall loss in average fitness of u 7),. A
‘productive’ driver mutation must confer sufficient fitness advantage to overcome this loss
to become competitive, i.e. requiring sq > p 7T,. Thus continued growth of the tumor
through accumulation of additional drivers needs p < p* = s4/T,, creating a new obstacle
to progression of cancer. Hence, rather counterintuitively, a large mutation rate proves a
barrier to expansion of cancer tumors.
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