2.3.6 Lattice models

Our discussion of the phases of the designed REM was still largely based on elaborations of
thermodynamic arguments. One difficulty is that within the REM the connection between
different polymer structures, and the kinetic moves from one structure to another, are not
specified. It is precisely the energy barriers encountered along such moves that determine the
time scale for reaching equilibrium. These issues can be addressed by adding dynamical rules
to the simple lattice models introduced earlier. The rules have to be local (such as pivoting a
bond), but sufficient to allow the polymer to arrive from any state to another. ° In a Monte
Carlo (MC) procedure, moves are attempted randomly, and accepted /rejected according to
the Metropolis algorithm: If the energy change AFE is negative the move is always accepted.
However, moves that increase energy (AE > 0) are still sometimes accepted with probability
governed by the Boltzmann weighte 2. While the MC procedure is a far from realistic
description of protein dynamics, it simple lattice model does face the issues of speed /stability,
and has to overcome the Levinthal paradoz.

In the 1990s many such simulations were performed, typically on a polymer with 27
sites, which can fold to a variety of compact configurations on a 3x3x3 cubic lattice. While
the low energy states were compact the starting (unfolded) configuration could be chosen
amongst the much larger number of swollen self-avoiding walks on the square lattice. Each
of the 27 sites is labelled with an “amino-acid” a;, while the energy of a configuration is
E(C) =3, Ulai, a;)Ai(C), where A;;(C) is adjacency matriz for configuration C', whose
elements are 1 or 0 depending on whether or not the non-polymeric pair (ij) is adjacent in
configuration C, and U(a;, a;) is the matrix of interactions between amino-acids. A random
assignment of amino-acids to the sites of the polymers typically does not yield a foldable
state; the corresponding polymer at low temperatures usually gets stuck in a swollen state
at low temperature. One question is thus how to find a sequence that is foldable.

It is in fact possible to devise a different MC procedure that mimics ‘evolution’ to design
a sequence that has low energy in a specified configuration. For a target “native” structure,
characterized by an adjacency matrix d;;(n), the goal is to minimize E,, = Y U(a;, a;)A;;(n),
over the set of all possible adjacency matrices. More precisely, one needs to minimize 2, =
(En — Eue) /X, where E,,. is an average energy of all structures, and ¥ is the corresponding
variance, for a given sequence {a;}. In principle, Z, has to be obtained by comparing all
competing structures with the same number of bonds as the desired configuration, e.g. all
compact structures. This is computationally difficult, and in an approximation analogous to
REM, we can set E,,. = Neg and ¥ = No?, as in Eq.(2.61), related to the mean and variance
of U(a;, a;), respectively. The “evolution” MC then proceeds as follows: start with a random
sequence; attempt a move replacing the amino-acid at a site i from a; to a;. Accept or reject
the “mutation” according to the change AZ,, with Metropolis probabilities controlled by a
“design” temperature Ty.s. An important issue is that the quantities F,,. and X are not
known, and cannot be enumerated. To simplify, it is typically assumed that contacts are
random (given by (A;; =~ n/[N(N —1)/2]) and selected in uncorrelated fashion from possible

°It can be shown that a combination (i) corner flip, (ii) crankshaft, and (iii) tail flip moves are sufficient
to sample all configurations on a cubic lattice.

24



interaction pairs, leading to X% ~ n(U(a;, a;)?)..

A polymer designed by the above procedure, starting from a swollen initial state, does
not fold at low temperatures, and typically is again caught in a trap. The same polymer
simulated at intermediate temperatures may (or may not) fold. Thus, it is empirically
possible to construct foldable sequences in the lattice model that to overcome the Levinthal
paradox.

The average folding time obtained in such simulations has a non-monotonic dependence
on temperature T'; at high temperatures there are too many competing states, while at low
temperatures the system is easily caught in a trap. A theoretical model for folding time,
which reproduced these trends can be constructed, and is presented in the problem set.
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