
Physics 8.861: Advanced 
Topics in Superfluidity



• My plan for this course is quite different from the 
published course description.   I will be focusing 
on a very particular circle of ideas around the 
concepts: anyons, fractional quantum Hall effect, 
topological quantum computing.  

• Although those topics might seem rather 
specialized, they bring in mathematical and 
physical ideas of great beauty and wide use.



• These topics are currently the subject of intense 
research.  The goal of this course will be to reach 
the frontiers of research.  

• There is no text, but I will be recommending 
appropriate papers and book passages as we 
proceed.   If possible, links will be provided from 
the course home-page.



• Here are 5 references that cover much of the 
theoretical material we’ll be studying:

F. Wilczek, ed. Fractional Statistics and Anyon Superconductivity (World Scientific, 1990)

A. Kitaev, A. Shen, M. Vyalyi Classical and Quantum Computation (AMS)

J. Preskill, Lecture Notes on Quantum Computing, especially chapter 9: Topological 
Quantum Computing, http://www.theory.caltech.edu/people/preskill/ph229/

A. Kitaev, quant-ph/9707021

A. Kitaev, cond-matt/050643



Lecture 1

Introductory Survey



Fractionalization



• Quantum mechanics is a young theory. We are still 
finding basic surprises.    

• One surprising phenomenon - perhaps we should 
call it a “meta-phenomenon”, since it appears in 
different forms in many different contexts - is that 
the quantum numbers of macroscopic physical states 
often differ drastically from the quantum numbers 
of the underlying microscopic degrees of !eedom.

• Reference: F. W., cond-mat/0206122



• The classic example is confinement of quarks.  This 
was a big stumbling-block to accepting quarks, 
and to establishing the theory of the strong 
interaction.   

• Now we “understand” confinement in simple 
ways.  One way is through strong coupling lattice 
gauge theory.  Another is by analogy to 
superconductivity and the Higgs phenomenon.  
Both are closely related to ideas we’ll be 
developing in depth.  



• Aside: Color-flavor locking. 



Confinement From 
Superconductivity

• BCS: Nonperturbative effects in a tractable 
(weak coupling) context. 

• Meissner effect ↔ Confinement 

• Gap ~ Chiral symmetry breaking



Color-Flavor Locking

• <qαa qβb>= κ1 δα
 
aδβb + κ2 δα

 
bδβa

• Color x FlavorL x FlavorR  →  Color + FlavorL + FlavorR

• SU(3)local x SU(3)global x SU(3)global → SU(3)global

• The new symmetry generators are non-trivial 
combinations of old symmetry generators -  including 
gauge parts!



• Quark fields produce states with the quantum 
numbers of baryons. 

• Gluon fields produce states with the quantum 
numbers of vector mesons.

• Collective excitations associated with spontaneous 
chiral symmetry breaking produce states with the 
quantum numbers of pseudoscalar mesons.    

• Glue - γ  mixing imparts integer charges to the 
quarks!



• End of aside.



• In elementary QED, we are accustomed to the 
idea that the observed charge of particles directly 
reflects the charge of local fields that create the 
particles.

• This happens despite vacuum polarization, 
because the effect of renormalization is universal: 
eren = (Z3)1/2 ebare.     Heuristically, this universality 
is a consequence of absence of any lasting 
“character” for a very low-resolution photon to 
sense.  

Fractionalization, in General



• If, however, there is additional long-range, stable 
structure associated with a state - e.g., a 
topological quantum number - then we can have 
eren = (Z3)1/2 ebare  +  (Y3)1/2 qtop.   If qtop is modular, 
the charge spectrum remains rational, but in 
general it needn’t be.  

• On first hearing all that might sound like an 
esoteric abstract possibility, but we will see many 
examples.  

• There is even a nice pictorial realization: the 
Schrieffer counting argument.





Locking Charge and Angular 
Momentum for Vortices

• Now I’d like to show you the simple example, that 
first started me thinking about fractional angular 
momentum and statistics.

• Consider an SU(2) “isospin” gauge theory broken 
down to nothing* by an isospin-3/2 scalar “Higgs” 
field, realized as a 3-index symmetric spinor.   The 
vacuum expectation value is <ηαβγ> = v δα1δβ1δγ1 
in the ground state - or, of course, any SU(2) 
rotation thereof.



• Rotating around the (internal) z-axis, by θ induces 
a phase e3iθ/2 on this VEV.   

• A minimal vortex makes a ϕ-dependent rotation 
around the internal z-axis through 2ϕ/3, where ϕ 
is the spatial azimuthal angle.   Thus for ϕ=2π the 
VEV is unchanged, and everything is consistent. 
(Of course at the origin ϕ is ill-defined, but since 
η(0) vanishes we don’t need to know how to 
rotate it, and nothing is singular.)



• The asymptotics <η(r, Φ)> → v e2i Φ/3 (as r →∞) is 
not rotationally invariant: scalar fields shouldn’t 
change with angle!

• However the “locked” combination                
Lzmodified  ≡ Lz - 2/3 Iz                                                                             

of naive rotations with gauge transformations 
does leave this condensate invariant.   It generates 
a genuine rotational symmetry in the presence of 
the vortex.



• Now suppose an isospin-1/2 particle is bound to 
the vortex.   For it, Lzmodified = Lz - 2/3 σz has 
eigenvalues = integer ± 1/3!

• A pregnant question: What about the spin-
statistics connection?? 

• Expect exchange factor = ei2πJ based on ribbon 
argument of Finkelstein and Rubenstein.  
(Starting from path integrals in a relativistic 
theory.)



• *Actually the SU(2) gauge symmetry is not 
completely broken.   There is a residual Z3, 
generated by e4πiI3, that leaves the VEV invariant.  
The existence of vortices and their peculiar 
interaction with charges, which we’ll be discussing 
in depth, is  characteristic of a discrete gauge 
theory.  



Fractional Statistics and 
Emergent Gauge Fields

• A charged particle acquires phase when 
transported around a flux tube (thin solenoid), 
according to eiS = ei∫Ldt = ei∫qA⋅v dt = ei∫qA⋅dx.   The 
phase affects quantum interference between 
alternative paths around the solenoid. The 
physical consequences are called Aharonov-Bohm 
effects.

• The phase is of a purely geometric character.   It 
occurs despite the absence of classical forces - i.e., 
no B-field in the region outside the solenoid.



•  In the case of flux tube-charge composites, the 
Aharonov-Bohm phase implements fractional 
statistics, and restores the expected spin-statistics 
connection.   



• Nonabelian versions are also possible, obviously.  
They bring in a host of interesting complications, 
as we’ll see. 

• In the nonabelian case, braiding operations in 
physical space produce intricate motions in 
Hilbert space.   This can support quantum 
information processing and quantum computing.

• Even the abelian case has rich possibilities, in 
complex topologies.   Roughly, statistical flux can 
pass through the holes.  (Note that embedding of 
2d surfaces with boundaries into 3d can become 
quite complicated - one step beyond knots!)



Quantum Hall Effect; 
Experiments



The Quantum Hall 
Playground

• The quantum Hall complex of states occurs in 
effectively 2-dimensional electron gases at low T 
and large B.  They are new states of matter, 
dominated by quantum mechanics, with striking 
phenomena and a very interesting theory.  

• A powerful way of thinking about them - I think 
the most profound way - is as a new form of 
superconductivity, in which fictitious gauge fields 
implementing fractional statistics get intertwined 
with electromagnetism.   



• The quasiparticles (and quasiholes) of the 
quantum Hall states are firmly predicted to be 
fractionally charged anyons.  

• Most of the observed states are predicted to 
support abelian anyons, but one at filling fraction 
ν = 5/2 almost surely, and possibly others, support 
nonabelian anyons.  

• There are models and ideas for other realizations 
of anyons, as we’ll discuss.  But so far only the 
QHE is securely - though only theoretically - 
established.   



Experimental Anyonics?

• There have been convincing direct observations 
of fractional charge through shot noise and 
through direct imaging (and more controversially 
through resonant tunneling). 



• Fractional statistics may also have been observed, 
though not everyone is convinced.   (We’ll be 
examining the controversy.)  





Fundamental idea:  
interference between 
paths depends on the 

phase-influence of 
anyons in between.











• The periodicity in 5h/e is striking, regardless of 
interpretation. 

• There are several issues, however:

• Charge on island may not be accumulating by 
creation of 2/5 quasiparticles. 

• The independent-particle model of charging 
may be naive.  



• In any case, the basic strategy seems sound: let 
currents flow in either of two ways around an 
island, and look for interference that is sensitive 
to putting charge on the island.  

• A new generation of interference experiments is 
under development, aiming to confirm both 
abelian and nonabelian anyon statistics.

• There is also an interesting proposal to detect 
statistics through noise.  (Kim et al. , PRL 95 
176402 (2005))



Quantum Computing



Quantum Computing: Toy 
Example and Tease

• Quantum computers attempt to exploit 
entanglement and the vast size of Hilbert space 
for parallelism and bandwidth.

• Classical bits are binary variables.  Qubits are 
binary variables that can be superposed e.g., spin 
up or down with respect to a specified direction.  
Thus a qubit spans a 2-complex dimensional 
Hilbert space.   And n qubits span a 2n 
dimensional space!   



• A quantum computer performs a unitary 
transformation on its input, and is read out by a 
measurement.  

• Reversible classical computers are a special case, 
where the unitary transformation simply 
permutes the canonical basis vectors.   

• A simple toy example will bring out some 
characteristic features:







• That toy example (due to Deutsch) illustrates how 
global aspects of a function can be projected out 
by quantum superposition.   

• More serious examples of the potential 
advantages of quantum computers are Shor’s 
algorithm for factoring large numbers and 
Grover’s algorithm for search.

• Probably the most important practical use for 
quantum computers would be to do quantum 
mechanics! (In particular, chemistry.)   



• Quantum minds might really “think different”.  

• They might want to be left alone.  Their reticence 
could supply the answer to Fermi’s question: 
“Where are they?”


