
Lecture 3
Kitaev’s First Model: Degenerate Ground 

States and Abelian Anyons



Defining the Model
• Consider a kxk square lattice with spins 1/2 
(“qubits”) on each link - 2k2 qubits. 

• A complete set of states can be labeled by the 
eigenvalues of the σz l .  If we use |1> for spin up, 
and |0> for spin down, they become binary arrays.

• Define operators As associated with sites and Bp 
associated with plaquettes: 



Lattice with periodic boundary conditions ( = torus)

B operator

A operator



• These operators all commute, because As always 
meet Bs at an even number of links.  Their 
eignvalues are ±1. 

• Define the “protected” states to be those left 
invariant (eigenvalue +1) by all the As and Bs. 
These define the allowed words of a simple code 
with remarkable properties, as we’ll see.

• The protected states are also precisely the ground 
states of the gapped Hamiltonian 



• The B = 1 equations say that the number of down 
(or up) spins on the links of any plaquette must be 
even. That condition is of course obeyed by many 
spin configurations.

• The A = 1 equations will set the coefficients of 
many such configurations equal.   To see how 
powerful those equations are, we use them to boil 
down the independent coefficients, by mapping to 
a few canonical spin configurations, whose 
coefficients will therefore determine the others.   

Finding the Protected States



• A maximal tree is a set of links that contains no 
loops, but that you can’t add to without creating a 
loop.

• By applying A operators to a state for which all 
the Bk = 1, you can set all the spins on the links of 
a maximal tree = |0> (i.e., down).  This is similar to 
gauge fixing in a gauge theory.

• In the following maximal tree, you can run along 
the top row, then act with As “from the bottom 
up” one column at a time setting spins = |0>.   
None of these actions interferes with the previous 
ones.   



A maximal tree; dotted line is periodic reflection.



• The B = 1 condition then enforces many 
additional spins down: 



Spins down red links force (B=1) spins down on the blue links too. 



• The value of the spin on the northwest link is 
enforced at other links, again through B = 1:



The green links can be up or down, but they must all be equal.



• Similarly, the value at the southeast link is 
enforced elsewhere ... 



The yellow links can be up or down, but they must all be equal.



• The sum (mod 2) of spins along a vertical or 
horizontal loop cannot be altered by acting with 
As, so there is no further reduction.   

• Thus there are four degenerate ground states.  
Each consists of a superposition of 1/4 of all 
possible solutions of the B = 0 equations, each 
taken with equal weight.   The 4 different classes 
are characterized by the sum of spins along 
vertical and horizontal loops (mod 2, of course) = 
(0,0), (0,1), (1,0), or (1,1).



Operator Interpretation

• The existence of 4 code words (alternatively, 
degenerate ground states) follows heuristically 
from an operator count.  There are k2 A 
conditions, k2 B conditions, and two global 
relations:

                                                                                                                                                                                                        

• Thus there are 2k2 - 2 constraints on 2k2 spins, 
leaving 2 spins free.   Two free spins span a 4-state 
Hilbert space.   



• A more profound view is based on finding the 
operators that commute with the As and Bs (a.k.a. 
the centralizer).   There are two classes:

• Z-type operators, based on taking products of σz l  
around closed loops.

• X-type operators, based on taking products of σx l 
around links intersected by closed loops in the 
dual lattice.   A picture is worth ~1000 words here:





• Z operators for contractible loops are products of 
Bs.  (Just plaster the inside with plaquettes.)

• X operators for contractible loops are products of 
As.  (Plaster the inside with plaquettes of the dual 
lattice, and use sites at the centers of those 
plaquettes.)   



• There are 2 non-contractible loops, and 
corresponding Z and X operators:



Z1

Z2

X1

X2



• X1 and Z1, and separately X2 and Z2, satisfy the 
commutation relations of σx and σz.  Thus there 
is an SU(2)xSU(2) algebra realized on our four 
states.   

• We have constructed 2 protected qubits.



Information Storage

• What kind of foul-up would cause us to mistake 
one codeword - that is, one of our protected 
qubits - for another?  

• Consider the generic Error-inducing operator 



• It will take us to a new codeword only if E 
commutes with all the As and Bs.

• But if E is made from As and Bs, it doesn’t change 
the codeword, and there is no mistake.

• E can only cause mistaken identity if it contains a 
non-contractible loop (or dual loop).  But that 
requires ≥ k errors!  



• We can do local checks with the As and Bs, that 
can reliably detect up to k-1 errors, and can 
therefore reliably correct up to [k-1/2] errors.   

• We can do the correction by applying the 
projector Π (1+A) Π (1+B).  

• Since the codewords are ground states, errors are 
excitations, and one could imagine that cooling 
could eliminate them physically!



• If we consider local perturbations, the implication 
is that overlap between protected codewords be 
induced only at high orders, ~k, in perturbation 
theory.   Thus it is exponentially small in the size 
of the lattice.   



Electric and Magnetic 
Excitations

• Since the As and Bs commute with the 
Hamiltonian, and each other, we can diagonalize 
the Hamiltonian using their eigenstates.  

• The excitations of our model Hamiltonian have 
energy measured by the number of stars and 
plaquettes they bring from 1 to -1.   

• Due to the global constraints on the As and Bs, it 
is impossible to frustrate just one star or just one 
plaquette.   The minimum is two.



• Electric pairs can be created by open Z-type 
operators.

• No plaquettes are excited.  The excited stars 
occur for sites at the end of the string.  We say 
electric particles are at these sites.

• Since B operators move the string around, the 
connecting string can be jiggled around without 
changing the state.  Its topology does matter, 
however.   (Strings that wrap around cycles change 
the state, as we’ve seen with Z1 and Z2.)  



Electric pair with string



• Magnetic pairs can be created by open X-type 
operators.

• No stars are excited.  The excited plaquettes 
occur around the (dual) sites at the end of the 
string.  We say magnetic particles are at these 
sites.

• Since A operators move the string around, the 
connecting string can be jiggled around without 
changing the state.  Its topology does matter, 
however.   (Strings that wrap around cycles change 
the state, as we’ve seen with X1 and X2.)  



Magnetic pair with string



Mutual Anyonic Statistics

• Many-particle eigenstates, containing both 
electric and magnetic particles, can be 
constructed by plunking down multiple (non-
crossing) open strings.   The energies just add.   
Electric charges interact only by annihilating, as 
do magnetic charges.

• The topology of the string network matters, 
however.  Different topologies may define 
different states, or the same state with a different 
phase.   



• Electric strings can be pulled through one another 
(since all the σz commute) as can magnetic strings 
(since all the σx commute).   

• Interchange of electric - or magnetic - particles 
gives back the same state.  (See following Figures.) 
Thus, taken separately, they are bosons.



Two electric pairs with strings



Interchange, with p going over q

p
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Getting back, with B operators

p
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Reconnecting, with B operators

p
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• But pulling an electric particle around a magnetic 
particle gives a minus sign, as a σz gets pulled 
through a σx:



The extra (orange) loop induces a  factor -1





• This behavior is unlike conventional quantum 
particle behavior.  The electric and magnetic 
particles have mutual anyon statistics.

• It is a subtle long-range quantum interaction, in a 
system with an energy gap.  



Anyons and Ground State 
Degeneracy

• There is a close relationship between the 
existence of anyons and ground state degeneracy.

• If we produce a virtual electric pair, bring it 
around a closed loop, and annihilate, it leaves 
behind our X1 operator!



• With the schematic - Σ (A + B) Hamiltonian, the 
electric and magnetic particles at definite 
positions are exact eigenstates.  There is no 
tendency to “hop”.   With a more general 
Hamiltonian, of course, that wouldn’t necessarily 
be the case.  

Scholium



• Exercise, I think: Go from simple “sign” operators 
to “phase” operators, and get true anyons.

• Exercise: Work out statistics of dyons.  

• Project: Make models in this spirit for higher 
dimensional situations and objects.


