
Lecture 4
Kitaev’s Second Model, Part 1: A Phase 

With Abelian Anyons



• We have spins-1/2 at the vertices of a honeycomb 
lattice.

• The Hamiltonian is 

where the geometry is indicated next:

The Model



z-link x-link y-link



• Note that the honeycomb lattice is bipartite (red 
vertices have blue neighbors, and vice versa).  

• This Hamiltonian, consisting of 2-body 
interactions, is much more realistic than the 1st 
Kitaev model.   



Plaquette (Hexagon) 
Operators

• The product of “appropriate spins” around an 
elementary plaquette, as indicated next, is an 
integral of the motion.
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• It is very convenient to define the operators Kij on 
links to be the spin-products that appear in the 
Hamiltonian, e.g. products of σx operators for x-
links. 

• The Wps commute with all the Kij - and therefore 
with the Hamiltonian. Indeed, an external 
“external” link will impact only one vertex (or 
none), and will act with the same-direction σ as 
appears in Wp.  And an “internal” link will acquire 
two minus signs on commutation.   



• We can also write Wp = K12K23K34K45K56K61 
(check!).   To make it plausible, note that σz1 
appears in K12 and σy1 appears in K61. 

• The Wps therefore commute with each other, as 
of course could also be shown directly.  



• Wp is Hermitian and Wp
2 = 1.   So we can partially 

diagonalize the Hamiltonian by specifying sectors 
with definite values ±1 of the Wp.



• From the creation and annihilation operators of  
fermions we can construct Hermitean operators 
for their “real and imaginary parts”:

Fermionic Representation of 
Spins



• These obey the Clifford algebra

• We’ll call them Majorana or Majorana fermion 
operators.



• Given four Majorana operators bx, by, bz, c, define



• Each of these is Hermitian and squares to 1. 

• D commutes with the tilde-σs.  

• Within the subspace with D = 1, the tilde-σ 
operators obey the standard Pauli σ algebra:



• Our 4 Majorana operators naturally act on a four-
dimensional Hilbert space: the Hilbert space of 
two standard fermions.  

• On the two-dimensional subspace with D= 1, they 
faithfully represent a single spin.   



• Now we resume our analysis of H.  In terms of the  
Majorana representation of the spins, the 
Hamiltonian takes the form (in a condensed but I 
hope self-explanatory notation):

Free Fermions Within the 
Sectors!





• The u-operators are Hermitian and square to 1.

• They commute with the Hamiltonian, and with 
each other.   

• So we can diagonalize them all, defining various 
dynamically independent sectors.   

• ujk depends, for its sign, on the order of j and k.  
By convention, when we assign eigenvalues to us 
we go from even to odd lattice sites (red to blue 
dots).



• However, the u operators do not commute with 
the Ds.   

• In order to land within the physical Hilbert space 
(where the original spins live) we must project 
with Π(1+D)/2 on all the vertices.  

• This step is reminiscent of how we projected with 
Π(1+A)/2 in the earlier model, to find highly 
entangled ground states.   



• Here too, in terms of the fermion Fock space, the 
allowed spin states are highly entangled.   

• Q: What do the different u-sectors that get 
entangled have in common? A: They support the 
same eigenvalues of the plaquette operators Wp.*



• *This holds strictly for a plane; there is a subtlety 
on a torus, as will soon appear.   

• One shows this by applying D operators (if 
necessary) to fix the us on a maximal tree = 1:



All the (yellow) y and (green) z links, plus one row of 
(purple) x links, make a maximal tree.



Using D operators as necessary we can first fix u=1 along 
the special row, then move from there out through the 

columns.



The remaining purple us are free.  Moving out from the 
special row, we see that they determine, and are 

determined by, the plaquette eigenvalues.



• On a torus, we’ll eventually “bite our tail”.  This 
leads to complications reminiscent of what we 
encountered in the first Kitaev model on a torus
(Exercise!).  



• Within each sector with definite values of the us, 
the Hamiltonian becomes a free (i.e., quadratic) 
fermion Hamiltonian! The hopping coefficients 
depend on which sector we’re in.    



Here A is a big real (and real big) antisymmetric matrix.



Ground State and Spectrum: 
General Principles

• We now have a set of normal mode problems to 
solve.

• According to general principles of linear algebra, 
we can find a real orthogonal transformation Q to 
put A in the form



• Here, the energies ε ≥ 0. Then with 

we have



• The ground states in the different sectors are the 
totally unoccupied states.   The energy of each 
ground state is negative.  It arises from the 0-
point energy of the fermion modes.  



Vortex-Free Sector

• According to a theorem of Lieb, the lowest energy 
sector is the vortex-free sector.  In this sector, we 
can take all the us = 1.  (Note: This includes the 
even-odd convention for direction.  The signs 
work out: wp = Π ujk for each plaquette and the 
links that belong to it.)

• In the vortex-free sector, we can use Fourier 
analysis to find the normal modes.    



• The straightforward but somewhat unpleasant-to-
notate details are left as an exercise.   The final 
result for the energies is 

where the ni are:



n2 n1



• The qualitative low-energy properties of the 
system depend on whether there is a gap in the 
energy spectrum.   Thus we must investigate 
whether there’s a solution of ε(q) = 0. 

• A straightforward analysis (see web page for 
notes) shows that the necessary and sufficient 
conditions for there to be a non-trivial solution 
are the triangle inequalities:



Gapped Phase: Reduction to 
First Model!

• The long-distance, low-energy behavior of a gapped 
phase is semitrivial: conventional interactions fall off 
exponentially with distance, but - as we’ve been 
obsessing over - there is the possibility of long-range 
topological interactions, in the form of exotic statistics.

• For definiteness we consider the case Jz >> |Jx| + |Jy|.

• If Jx = Jy = 0 the Hamiltonian is minimized when spins 
on z-links are locked together.  Thus we have a (trivial) 
effective spin model for the low-energy states: 



The effective spins live on a square lattice.



• It costs energy of order Jz to break these bonds.  

• Now turning on Jx and Jy, we must do degenerate 
perturbation theory in the states described by the 
previously uncoupled effective spins.  

• The first interactions arise in fourth order.  It 
comes from flipping spins in a very particular 
pattern, since each bonded pair must be hit twice:



Generating interactions among the effective spins.



• A detailed calculation gives, with the geometry 
shown next,



Geometry of effective spin interactions: plaquettes p in the original lattice 
become plaquettes and stars s in the effective lattice.

p

s



• These effective interaction terms have all the 
essential properties of the A and B operators in 
the first model.  They are Hermitian, mutually 
commuting, and square to 1.  

• Indeed, by a suitable unitary transformation 
(rotating the spins) we can put the effective 
Hamiltonian in exactly the earlier form.



Fusion and Braiding

• From our study of the first model, the 
“superselection” sectors, that cannot be 
connected to one another by local operators, are 
vacuum 1, electric excitations e (charges), 
magnetic excitations m (vortices) and 
combinations of the two ε (dyons).  These sectors 
cannot be reached from one another by local 
perturbations.  

• We have fusion rules for joining the sectors:
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• We showed before that e and m are bosons, with 
mutual anyon statistics (-1 for braiding).   

• At the same time we showed, without perhaps 
realizing it, that ε is a fermion.  Indeed, rotating 
it through 2π brings e around m, hence a - sign; 
and the Finkelstein-Rubenstein ribbon - or belt! - 
argument connects spin and statistics.  

• (If you did the suggested exercise, you will also 
have shown this directly.)



• From the point of view of the original spin model, 
the electric and magnetic excitations are vortices 
in different parts of the lattice:
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• It seems quite remarkable that to transition from 
one of these vortices to another you must emit a 
fermion.

• In general this second model, even more that the 
first, is an amazing example of emergent physics.  




