
Lecture 6
More on the fermion spectrum; background on flows



Road Map of Coming 
Attractions

• We are in the midst of analyzing Kitaev’s second 
model (involving spins on a honeycomb lattice) in 
the phase - realized for Jx = Jy = Jz ≡ J - where a 
small magnetic field produces a gap.   Our main 
goal is to show that the excitations in this phase 
produces non-abelian anyons.   

• The demonstration, and for that matter the 
result, is rather intricate, so we will do it in steps.



Topology in the Fermion spectrum

Flows and Edge Modes from Topology

Unpaired Majorana Modes on Vortices from Flow

Nonabelian Statistics from Unpaired Majorana Modes



Review (with more details) of 
the Lifted Spectrum



• We are analyzing a model with spins on a 
honeycomb lattice and the Hamiltonian

• We found that in each sector - defined by values of 
the vorticity Wp = ±1 on each plaquette

 

the Hamiltonian reduced to a free fermion 
Hamiltonian.  



z-link x-link y-link



• The lowest-energy sector is the vortex free sector, 
with all Wp = 1.

• In that sector, the hopping amplitude is 
proportional to J, and connects nearest neighbors. 
Hops take us from even to odd (red and blue) 
sites.



• In the presence of a magnetic field, i.e. a 
perturbation

we have next-nearest-neighbor hopping amplitude 
with coefficient κ ∝ hxhyhz/J2.
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• Processing the original term:

Sum on k

See unit cell, next slide

Even↔Odd
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• Thus for each q we have the off-diagonal 
matrix

(In going from - to +, there’s a conventional change in sign, 
and μ → -μ.)

(This differs from Kitaev in 
an overall phase and scale.)



• This leads to energies ± |f(q)|.

• There is a zero at qy=0, qx = ±(2/√3)(2π/3)



• A similar calculation gives for the 
perturbation term

where ∆(q*) ~ hxhyhz/J2 ≠ 0 is real.



• The sum looks like                                 .   The 0 eigenvalue 
is lifted, since the determinant won’t vanish.  

• The separation of modes into positive and negative 
frequencies depends on the direction.  To “straighten out” 
the gap, we must make a q-dependent rotation of the mode 
basis.   There is significant topology in this collection of 
rotations, as we’ll analyze next time.  It leads to funny 
quantum numbers on vortices and to edge currents in 
response to weak perturbations.

•  [Yesterday’s Chez Pierre seminar concerned closely related 
issues potentially leading to dissipationless spin Hall 
effects.  Very hot cool stuff !]



The Yoga of Quantum 
Number Flows

• Reference: “Fractional Quantum Numbers on 
Solitons”, J. Goldstone and F. Wilczek, PRL 47 
986 (1981)

• We’ve been led to topology of the “mass term” in 
momentum space.  One can have closely related 
effects in real space, that are easier to visualize 
(and interesting in themselves).   



• Consider massless fermions in 1+1 dimensions 
interacting with two scalar fields Φ1, Φ2 according 
to                                  .

• This is invariant under the chiral transformation



• So it’s easy to calculate the current that flows in 
response to slow gradients in the fields.  We rotate 
the constant part to Φ1, treat it as a mass, and 
rotate back!

• From the Feynman graph displayed, we get the 
current (in the no-particle state)





Note: Manifestly 
conserved!



• We can find the charge of the fermi sea, induced 
by a soliton by fixing Φ1 = m/g and letting Φ2  vary 
from -v at x = -∞ to +v at x = +∞.  The result is 



• In general, this is transcendental.  

• The integer part is ambiguous, but that’s as it 
should be.

• For m → 0 we get Q = ± 1/2.  Also in this limit the 
background is charge-conjugation invariant.  
Interpretation: ∃ 0-mode, that can be either 
occupied or not. 



• This strategy for computing flows and anomalous 
quantum numbers, by widening the field space 
and building up the state you want adiabatically, 
can be widely generalized.  It’s a very worthwhile 
project - it could clarify some calculations that 
presently seem quite obscure, and bring out 
additional consequences.  

• Most “order parameter” fields are confined to 
finite samples.   To see what this implies, interpret 
the current as an addition to the effective 
Lagrangian action: 





• That’s not gauge invariant, (even) if j is manifestly 
conserved, because you can’t integrate by parts.

• However, suppose j has the form 



• Then you get a satisfactory action by taking the Θ 
function insider the ∂.  

• The price of this is that there’s an additional term 
at the boundary, from where ∂ acts on Θ.   It can 
be interpreted as representing topological edge 
currents.   


