**8.882 LHC Physics** Experimental Methods and Measurements

*B Physics Triggers and Lifetime Fitting* [Lecture 19, April 15, 2009]

# Organization

Project 2

- status: nothing yet received
- Project 3
- *B* lifetime measurement is due May 2

#### **Final Conference project**

- starts: 12:00 Kolker room on May 19
- each student gives
  - 17 minutes presentation
  - +3 minutes discussion
- agenda to be published

# Final Conference Project

#### LHC Physics: "Experimental Methods and Measurements"

- C.Paus: Welcome and LHC Overview
- ?: Search for Higgs in  $H \rightarrow ZZ^*$
- ?: Search for Higgs in  $H \rightarrow WW^*$
- ?: Search for Higgs in  $qqH \rightarrow qqWW^*$

# Physics Colloquium Series

#### The Physics Colloquium Series

Wednesday, April 15 at 4:15 pm in room 4-349

#### Sidney Drell

SPRING

SLAC National Accelerator Laboratory

Steps Toward a World Free of Nuclear Weapons: Rekindling the Vision of Reagan and Gorbachev at Reykjavik

For a full listing of this semester's colloquia,

please visit our website at web.mit.edu/physics

## Lecture Outline

#### **B** Trigger Strategies

- CDF trigger system overview
- high momentum displaced track triggers
  - experimental implications

#### A bit of probabilities and fitting

- probability density functions and expectation value
- least square method
- likelihood method
- lifetime example
- some technicalities for our application

# Review: Hadron Collider Triggers

Trigger Systems at Hadron Colliders come in levels

- per level: time to analyse and data to analyse increase
  - Level 1 implemented in hardware, custom electronic boards
    - rates at CDF: 3 MHz  $\rightarrow$  30 kHz or CMS: 25 MHz  $\rightarrow$  300 kHz??
  - Level 2 implemented in programmable hardware (FPGAs\*)
    - rates at CDF: 30 kHz  $\rightarrow$  1 kHz (CMS has no Level 2, merged with Level 3)
  - Level 3 implemented as PC farm, runs reconstruction program
    - rates at CDF: 1 kHz  $\rightarrow$  100 Hz (CMS has no Level 3)
  - CMS High Level Trigger (HLT) merges Level 2 and Level 3
    - rate:  $100k \rightarrow 100 \text{ Hz}$
- dead timeless design by long trigger pipelines: parallelized

#### \* Field Programmable Gate Array

# Trigger System at CDF

#### Speed

- trigger primitives are fast digitized objects
- less precise but fast
- **Trigger Primitives** 
  - muon stub
  - electron cluster
  - track

#### Triggers

- combination of trigger primitives and application of certain cuts
- *ex.* muon is already combined with track at level1

C.Paus, LHC Physics: B Physics Trigger Strategies

#### **CDF** Detector Components



# Outline of Track Trigger

Tracking is 2 dimensional
look for high momentum
Main idea: patterns/roads
granularity gives resolution

#### Hardware used

- four axial layers of COT
- XFT/XTRP trigger boards
- Three step process
  - hit finding
  - segment finding
  - track finding





# Hit and Segment Finder

Track segments are found by comparing hit patterns in a given layer to a list of valid patterns or "masks".



**Hits** : 2 bins - Prompt or delayed **Mask** : A specific pattern of prompt and delayed hits on the 12 wires of an axial COT layer generated by simulating tracks

**Pixel:** represents the **phi** position of the track at the midpoint of the cell.

| Layer | Cells | Masks | Pixels |
|-------|-------|-------|--------|
| 1     | 192   | 2304  | 166    |
| 2     | 288   | 3456  | 227    |
| 3     | 384   | 2304  | 292    |
| 4     | 480   | 2880  | 345    |

# Segment Finder and Linker

match

#### **Output of Segment Finder**

- inner two layers
  - phi position only
- outer two layers
  - phi position
  - slope of segment (3 bits)

#### **Segment Linker**

- uses phi position in all layers
- and slopes in the outer two
- combines them to a road
- 288 linkers (per 1.25°) each linker uses a table of 1200 predefined roads





# XTRP Board

#### Responsibility

- select the best tracks (highest  $p_{\tau}$ )
- distribute XFT tracks to other systems
  - level1 muons trigger
  - level1 calorimeter trigger
  - level1 track trigger (pass info)
  - level2 track trigger, SVT (pass info)
  - level1 and level2 global triggers
- extrapolate position to corresponding detector
  - extrapolate to muons chambers
  - extrapolate the calorimeter

# Secondary Vertex Tracker (Trigger)

Another trigger based on patterns

- resolution and speed are astonishing: 47μm at 15 μs
- 32,000 roads to be searched
- first such trigger at hadron collider ever



C.Paus, LHC Physics: B Physics Trigger Strategies



single hit

XFT info

# Secondary Vertex Tracker (Trigger)

- Typical trigger requirements
  - two tracks with  $p_{\tau} > 2 \text{ GeV}$
  - $p_{_{T1}}+p_{_{T2}} > 5.5 \text{ GeV}$
  - opening angle:  $0^{\circ} < \Delta \phi < 135^{\circ}$  (level 2:  $12^{\circ} < \Delta \phi < 90^{\circ}$ )
  - impact parameter: 120  $\mu$ m <  $|d_0|$  < 1 mm
  - upper cut due to pattern limitations (not enough memory/time to search through more pattern)
  - increased sensitivity to purely hadronic *B* decays by 4-5 orders of magnitude: this was the biggest upgrade for B physics in Run II of the Tevatron
    - $B \rightarrow D\pi$  ( $B_s$  mixing), etc.
    - $B \rightarrow \pi\pi$  (direct *CP* violation, maybe  $\alpha$ )

# Secondary Vertex Tracker (Trigger)

Problems you have to deal with

- intrinsic bias of proper time distribution
- sharp prompt peak disappears, reducing the background
- also gets ride of some signal (bias)



C.Paus, LHC Physics: B Physics Trigger Strategies

# Trigger Bias Curve

Simulation of trigger bias

- events we need to study are not in the data, to first order
- needs careful Monte Carlo study: generate events and keep them
  - silicon hit occupancy needs to be reasonably well simulated
  - check hit resolution function carefully, too
  - Monte Carlo must also have the  $\overset{\circ}{\underbrace{0}}_{1.5}^{0.5}$ right lifetime ....

The plot is for semileptonic events but looks similar for purely track based trigger



## Likelihood Fits

Have found a spectacularly nice talk from Colin Gay given at a Particle Physics students retreat. Please check it out, I am stealing a lot from there:

• http://physics.bu.edu/NEPPSR/TALKS-2006/Likelihood\_Gay.pdf

#### You also might want to check the statistics talk on the same site:

http://physics.bu.edu/NEPPSR/TALKS-2006/Statistics\_Blocker.pdf

# Probability

Assume X is a random variable, like for example our *ct* or *m* of an event

- the probability to throw X into window [x,x+dx] is P(x)dx
- P(x) is the probability density function (PDF) for X
- if we look at the entire range of possible values for X like for example: [-∞, +∞] we can be sure that X at any throw will take one of those values and this means the integral of the PDF should be one

$$\int_{-\infty}^{+\infty} P(x) dx = 1$$

The expectation value of function f(x) over P(x) $E(f) = \int_{-\infty}^{+\infty} f(x)P(x)dx$ 

#### Probability

Expectation values we are using all the time

- normalization: f(x) = 1
- mean value: f(x) = x
- variance: f(x) = (x <x>)<sup>2</sup>

$$E(x) = \int_{-\infty}^{+\infty} x P(x) dx = \langle x \rangle$$

 $E(1) = \int_{-\infty}^{+\infty} 1P(x)dx = 1$ 

$$E((x-\langle x\rangle)^2)=\int_{-\infty}^{+\infty}(x-\langle x\rangle)^2P(x)dx=\sigma^2$$

# **Conditional Probability**

#### Conditional probability P(x|a)

- is the PDF for X given that a is true
- $P(m|m_o)$  would be the probability that we measure the mass, m, for example for the Upsilon candidate if the true mass of the Upsilon was  $m_o$

#### Application of conditional probability

- in Monte Carlo simulation for the Upsilon for example
  - we know the mass and the detector resolution: PDF defined!
  - now we can through the values for each specific event
- fitting the data, again the Upsilon data
  - we do not know the mass, so we have to solve the inverse problem
  - infer the mass given a limited number of measurements
  - might have to also determine the PDF ....

# Samples

With our random variable X, which follows the PDF P(x), we can generate a set of throws, lets say N:

- set of throws called a sample, represented by tuple {*x<sub>i</sub>*}, for the example we have a set of mass measurements {*m<sub>i</sub>*}
- visualize the result in a histogram and put on top the conditional probability density function  $P(m|m_o)$
- chosen m<sub>o</sub> very likely not the correct one, shift it around until the curve "fits" the data, hmmm...
- we need to find a good estimator for m<sub>o</sub>



C.Paus, LHC Physics: B Physics Trigger Strategies

### Estimators

What are the requirements to an estimator?

- consistency: the value of the estimator should converge to the real value as our sample size goes to infinity
- efficiency: theory limits the variance about the true value of an estimator for a given sample size N (Minimum Variance Bound – MVB), if the variance of the estimator is equal to the MVB the estimator is called efficient
- unbiased: an estimator whose value is equal to the true value is unbiased

#### Examples of good estimators

- minimum of the  $\chi^2$
- maximum of the likelihood

# Least Squares Fit (x2 Fit)

- Given a set of measurements
- $x_i$  and  $y_i$ ,  $\sigma_i$  (histogram, bins, mean values, uncertainties)
- choose a function:  $f(x_i | \vec{p})$
- function predicts  $y_i$  in dependence of parameter values:  $\vec{p}$
- use the  $\chi^2$  given by:  $\chi^2 = \sum \frac{(f(x_i | \vec{p}) y_i)^2}{\sigma^2}$
- estimator for set of parameters is given by the ones which will minimize the  $\chi^2$
- likelihood is another estimator, which allows more complex formulations



# Binned versus Unbinned

#### The least square fit, a binned fit

- provides reliable unique quality criterion for the fit parameter to evaluate whether the data comply with the general fitting hypothesis
- has problems if there are very few entries per bin
  - assuming Gaussian statistic:  $\Delta n = \sqrt{n}$
  - is approximately correct for *n*>10 ....
  - for *n* = 0 uncertainty is zero, crashes least square
  - root is smart enough to exclude those bins... but parameter do not come out correctly (biased)

#### Likelihood formulation

- in general is unbinned (can be also binned)
- ideal for small statistics and sparse samples
- allows formulation of complex multidimensional problems

# Maximum Likelihood Estimators

Similar to the Least Square ( $\chi$ 2)... but more powerful

- use our setup: *n* measurements of the mass  $\{m_i\}$  and a given PDF of  $P(m|m_o)$  <sub>N</sub>
- likelihood is given by  $L(m_0) = \prod_{i=1}^{n} P(m_i|m_0)$
- for a given event it is likely that  $P(m_i|m_o)$  is large if the parameters are chosen to be close to the correct ones
- the estimator is given by the maximum of the likelihood
- they are consistent and efficient
- extracting the maximum likelihood from the data by adjusting the parameters is called fitting
- but some care please:
  - maximum likelihood estimators are not always unbiased

## Lifetime Likelihood

Probability density function for exponential decay given as:

 $P(t|\tau) = \frac{exp(-t/\tau)}{\tau}$  with proper intrinsic normalization The Likelihood:  $L(\tau) = \prod P(t_i | \tau)$  with measurements  $t_i$  from 1...N *i*=0 Technically, logarithms make more sense (use general minimization package minuit = TMinuit)  $\log L(\tau) = \sum_{i=1}^{N} \log P(t_i | \tau) = N \log \tau + \frac{1}{\tau} \sum_{i=1}^{N} t_i$ 

# Lifetime Fit Solution

Analytical solution is here possible

• maximize: find derivative, set to zero extract parameter(s)

$$\frac{\partial (-logL)}{\partial \tau} = 0 = \frac{N}{\tau_{\text{fit}}} - \frac{1}{\tau_{\text{fit}}^2} \sum_{i=1}^N t_i$$

$$N\tau_{\text{fit}} = \sum_{i=1}^N t_i \quad \rightarrow \quad \tau_{\text{fit}} = \frac{1}{N} \sum_{i=1}^N t_i \quad (= E(t) = \langle t \rangle = \text{ mean})$$

the maximum likelihood estimator for the true lifetime

TMinuit provides numerical algorithm to find the maximum even if not analytically solvable

• fitting is an art form though and requires some serious experience: but it is used everywhere today!

# Fitter for B Lifetime Analysis

Three packages for the unbinned likelihood fitter

- Fitter base package
- RemoteFit facility to run the fitter on a large number of machines parallelizing the calculations (not needed for us, but creates a dependence)
- MixFit the core package where you change things and implement your ideas
- packages are available in ~paus/8.882/614/Fitter.tgz
- compilation and shared library loading is explained
- something like
  - cd ~/8.882/614/results
  - root -I ../614/MixFit/scripts/fitCTauBuJpsiK.C
  - root -I ../MixFit/scripts/draw.C
  - and check the output :-) and the input ....

#### Fit Output Could Look Like Remarks

- selection not optimal (you can do much better)
- fits have some details (do not worry too much)
- another lecture on this will follow .... TWiki update soon



C.Paus, LHC Physics: B Physics Trigger Strategies

# Conclusion

#### Organization

- please sign up for your presentation
- **B** Trigger Strategies
  - displaced track trigger was a revolution for B physics
  - but it brings additional problems: biased proper time

#### Fitting the data

- use probability densities to evaluate a likelihood
- likelihood are ideal to describe small/sparse data samples
- likelihood allows to implement very complex contexts
- likelihoods are more computing intensive then least square fits usually
- invest in fitting, it needs experience and is very useful

## Next Lecture

- Fitting and sanity checking
  - likelihoods and fits
    - statistical uncertainties
- checking whether it makes sense
  - goodness of fits
  - projections

#### **Sophisticate Selections**

- likelihoods
- neural networks