8.882 LHC Physics Experimental Methods and Measurements

Higgs Analysis – Details [Lecture 25, May 11, 2009]

Organization

Project 3

• should be complete by now....

Course evaluation

- please fill in the Web forms at: http://web.mit.edu/subjectevaluation/
- high participation would be very desirable

Conference

• all set for May 19 at 12:00am in 26-528

Final Conference Project

- LHC Physics: "Experimental Methods and Measurements"
- Plenary Session (12:00–13:30, May 19, 26-528)
 - Welcome and LHC Overview (C.Paus)
 - Search for Standard Model Higgs Boson: Overview (M.Klute)
 - Search for Higgs in $H \rightarrow ZZ^*$ (M.Chan)
 - Search for Higgs in $H \rightarrow WW^*$ (H.Gray)

Lecture Outline

Higgs Analysis – Details

- Higgs Searches in the Standard Model
- Search for Higgs in $H \rightarrow ZZ^*$
- Search for Higgs in $H \rightarrow WW^*$
- (Search for Higgs in $qqH \rightarrow WW^*$)

Analysis information will be complete

- each analysis TWiki has detailed instructions
- signal and background samples are completely copied
- new updated analysis examples are provided

Standard Model Higgs Search

Conference organization

- there is an overall introductory talk
- for the Standard Model Higgs analyses there is a specific overview presentation (?)
 - idea: no presentation afterwards explains theory/general again
 - theory of Standard Model Higgs (1/2 slide)
 - theory constraints on its mass
 - explain status of the Standard Model Higgs searches before LHC
 - what else do we know about the Standard Model Higgs? radiative corrections, electroweak data
 - what can we expect from the LHC?

Analysis: Generic Instructions

- Two different types of analyses
 - pure Higgs search in a given channel
 - make mass plot
 - optimize selection cuts to get the "best" mass plot
 - number of signal and background event
 - signal significance
 - Iuminosity needed to make 5 standard deviation discovery
 - identify of Vector Boson Fusion (VBF) Higgs production
 - tag a forward jet
 - measure forward jet tagging efficiency with Monte Carlo info
 - measure rate of gluon fusion Higgs events passing forward jet tag
 - extract ratio of gluon fusion and VBF Higgs events after before and after the forward jet tag

Analysis: Overview

- New with respect to previous projects
 - there is no data yet
 - I doubt we could be easily allowed to use it if this was next year
 - so we have to use Monte Carlo
 - which of course has a Higgs signal
 - Monte Carlo description is complete
 - signal has various mass assumptions [GeV]: 130, 140, 150
 - full background description also given
 - only real leptons are properly covered
 - does not include complete 'fake' leptons
 - needs to be tested and adjusted to data
 - substantial amount of work
 - main background sources: multi-bosons to leptons (WW, WZ, ZZ)
 - fakes come from heavy quark decays, usual QCD events,

Analysis: Overview, continued

Outline of analysis sequence

- more complex than other projects before
- step 0: look at general analysis selection code and tune cuts as needed
- step 1: submit condor jobs to produce histograms for each Monte Carlo contribution
- step 2: merge all Monte Carlo contributions
 - sometimes there are several files per Monte Carlo contribution
 - simple root function used: hadd, but combined in script
- step 3: make plot and determine number of events from each Monte Carlo contribution

Analysis: Install Software

Unfortunately CMS has another software

- login to MIT cluster at CERN
 - login to MIT cluster at CERN: ssh pcmit00.cern.ch
 - only from CERN machine: for externals pass through lxplus.cern.ch
- use tar ball: ~paus/cms.tgz
 - cd ~/; tar fzx ~paus/cms.tgz
- setup the CMS software
 - cd ~/8.882/cms; source INIT
 - ready to go to the next step

Analysis: Creating Primitives

Common analysis primitives are prepared

- separate muon and electron identification
 - large number of criteria used
 - optimal point tricky to choose: high efficiency but little fake
 - optimal point analysis dependent: full optimization required
 - often similar id requirements are nevertheless used
- also photon, tau, jet and met ids are applied
 - after Id phase various objects have to be 'cleaned'
 - jets should not contain identified muons to avoid double counting
- merging phase to collate the identified objects

See examples

- ~/8.882/cms/root/runHww.C
- ~/8.882/cms/root/runHzz.C

Analysis: $H \rightarrow WW$

Objects to consider

- Higgs decays to 2 W bosons
- each W boson decays leptonically
 - muon + neutrino or electron + neutrino
 - two lepton types bring a number of coding complications with it
- basic observables
 - 2 leptons: muon/muon, electron/electron, muon/electron
 - missing E_T in the event
- form approximation of Higgs mass: transverse mass
 - peaks at real Higgs mass but has a long tail
 - check documentation on Jacobian peak for W boson mass measurement
 - already done in the selection code for you
- observation is counting experiment: signal vs background

Analysis: step 0 – adjust selection

WW analysis: MitHiggs/HwwMods/*/HwwExampleAnalysisMod.*

- histograms are booked here
- check what they are, add what you would like to look at
- selection details (~optimal), total of nine cuts applied
 - presel: highest lepton pT > 20, lowest lepton pT > 10, MET > 30, dilepton mass > 12
 - number of central jets (<1)
 - MET (min < MET < max, depends on final state)
 - delta phi between leptons (<max, depends on final state)
 - dilepton mass (<max, depends on final state)
 - highest lepton pT (min < pT < max, depends on final state)
 - lowest lepton pT (>min, depends on final state)
 - dirty muons (<1)
 - clean extra tracks (<4)

C.Paus, LHC Physics: Higgs Analysis - Details

Analysis: $H \rightarrow ZZ$

Objects to consider

- Higgs decays to 2 Z bosons
- each Z boson decays leptonically
 - muon + muon or electron + electron
 - two lepton types bring a number of coding complications with it
- basic observables
 - 3 permutations: mmmm, mmee, eeee
 - no missing E_T in the event
- form Higgs mass
 - peaks at real Higgs mass tails determined by detector
 - already done in the selection code for you

Analysis: step 0 – adjust selection

ZZ analysis: MitHiggs/HwwMods/*/HzzExampleAnalysisMod.*

- histograms are booked here
- check what they are, add what you would like to look at
- selection details (~optimal), total of 3 cuts explicitly applied
 - lepton flavor conservation: no $Z \rightarrow$ mu e
 - opposite charge for Z
 - lowest lepton pT > 15
 - dilepton mass Z1 > 12
 - dilepton mass Z2 > 12
- selection is very clean: not much to do

Re-compile all libraries once complete

- cd ~/8.882/cms/; source INIT
- cd \$CMSSW_BASE/src; scram b -j4

C.Paus, LHC Physics: Higgs Analysis - Details

Analysis: step 1 – submit condor jobs

WW or ZZ analysis: submitHist.sh (hzz | hww)

- cd ~/8.882/cms/root; ./submitHist.sh hzz
- a given list of Monte Carlos will be analyzed
- jobs are submitted to the cluster
- your tar ball contains a set of histograms which will be overwritten
 - only if you re-run the processing of the data your new histograms will become available of course
 - histograms are stored in: ~/8.882/cms/hist/hzz/filler/009/*
 - there might be several files for one given Monte Carlo, they have to be merged, see step 2
- basic histograms ready, this was time intensive step
- check progress of your job by doing: condor_q

Analysis: step 2 – merging files

WW or ZZ analysis: mergeHist.sh (hzz | hww)

- cd ~/8.882/cms/root; ./mergeHist.sh hzz
- in the list of Monte Carlo samples some might have several output files
- all files will be merged such that each Monte Carlo sample has one histogram file
- histograms are moved to: ~/8.882/cms/hist/hzz/filler/009/merged
 - these are the files which will be picked up by the following plotting step

Analysis: step 3 – plotting histograms

WW or ZZ analysis: plothzz.C | plothww.C)

- cd ~/8.882/cms/root; root -I plothzz.C
- a given histogram will be plotted
- a .gif file for the two plots will be made, ready for the presentation
- check the plot code which is self explanatory: well it is a bit long but you should quickly understand what is going on
- most importantly, it is here that the histograms are properly normalized to a given luminosity: 200 pb⁻¹
- cross section for each Monte Carlo are kept in: ~/8.882/cms/root/xs.dat

Analysis: step 3 – example Hww WW analysis: plothww.C (use leptonPtMax section)

cd ~/8.882/cms/root; root -I plothww.C

Analysis: step 3 – example Hww

WW analysis: plothww.C (use leptonPtMax section)

cd ~/8.882/cms/root; root -I plothww.C

C.Paus, LHC Physics: Higgs Analysis - Details

Analysis: step 3 – example Hww WW analysis: plothww.C (use minimum dPhi section) • cd ~/8.882/cms/root; root -I plothww.C

Analysis: step 3 – example Hww WW analysis: plothww.C (use dPhi section)

cd ~/8.882/cms/root; root -I plothww.C

Analysis: step 3 – example Hww WW analysis: plothww.C (use mT section)

cd ~/8.882/cms/root; root -I plothww.C

Analysis: step 3 – example Hzz ZZ analysis: plothzz.C (use histogram _106: mmm) • cd ~/8.882/cms/root; root -I plothzz.C

Analysis: step 3 – example Hzz ZZ analysis: plothzz.C (use histogram _206: eeee) • cd ~/8.882/cms/root; root -I plothzz.C

Analysis: step 3 – example Hzz ZZ analysis: plothzz.C (use histogram _6: mmee) • cd ~/8.882/cms/root; root -I plothzz.C

Conclusion

Higgs analysis details

- detailed outline of the expected analysis content has been discussed
- new software pieces have been provided:
 - base analysis "modules"
 - base set of scripts to produce histograms for all signals and backgrounds
 - utilities for histogram adding are going to be added soon
- if you have questions:
 - important: ask questions soon: Si Xie (sixie@mit.edu is the expert)
 - presentations need to be prepared well in advance of the conference
 - plan on a rehearsal before the weekend of the 16/17 May

Next Lecture

Discussion of the presentation

- style and content
- question and answer session for the conference presentations: please send in you questions and comments well in advance so they can be explicitly addressed