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Organizational Issues
 Nothing from my side....
 

 

 

 

 

 

 

 

 

 Remember though
● project 1 due March 12 (2.3 weeks) 
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Lecture Outline
• Detectors: Tracking

• gas tracking detectors Sauli paper CERN 77-09

• the Central Outer Tracker (COT) at CDF
• silicon detectors
• the silicon tracking system at CDF
• the tracker at CMS
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To Remember: Gas Detectors
• Design is complex.. or simply black magic
• Things you should remember

• ionization, avalanche development
• gain
• proportional chamber, multi wire chamber
• outline of gas choices
• resolution

• Pretty complete overview in Sauli's paper, 
impossible to copy in this lecture.
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Ionization Reminder
• Ionization: process which causes

• usually kick electron out  
• breaking ionization potential barrier

• Charged particle causes ionization in detector
• ion-electron pair (called ion pair)
• separate ion and electron in electric field
• electron drifts to anode
• ion drifts to cathode
• round geometry: 
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Ionization continued
• Factors for ionization

• electric field = “voltage”, but not only parameter
• affected by 

• gas temperature
• gas pressure
• electric field
• gas composition

• mean free path an important parameter
• ionization depends on the material's ionization potential
• some gases eat up electrons (quenchers)
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Ionization as a Function of Energy

• Ionization probability 
quite gas dependent

• General features
• threshold (≈20 eV)
• fast turnon
• maximum (≈100 eV)
• soft decline
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Mean Free Path
• Mean free path

• average distance an electron travels until it hits a target
• half of ionization is due to “last mean free path”

• Some typical numbers

Vacuum range Pressure [hPa] Molecules/ccm mean free path [m]

Ambient pressure 1013 2.7*1e19 68   1e-9

Low vacuum 300..1 1e19..1e16 1e-7 – 1e-4

Medium vacuum 1..1e-3 1e16..1e13 1e-4 – 1e-1

High vacuum 1e-3..1e-7 1e13..1e9 1e-1 – 1e3

Ultra high vacuum 1e-7..1e-12 1e9..1e4 1e3 – 1e8

Extremely high vacuum <1e-12 <1e4 > 1e8
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What Happens after Ionization?
• After collision ions/electrons thermalize quickly and 
travel until neutralized

• Ions
• neutralize through electron, wall, negative ion
• travel slowly through diffusion process
• diffusion velocity depends on gas, important for design

• Electrons
• neutralize through ions, wall, attach to some molecules
• mean free path about 4 times longer than for ions
• diffuse very quickly, accelerate in E field (avalanche)
• drift velocity strongly depends on gas mixture
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The Avalanche

• Electrons diffuse to anode
• ionize atoms they hit
• spreading laterally
• electron drift fast about 1 ns ↔ ions slower (heavier)
• leave positive ion cloud behind

•  
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Gas Tracking Detectors
• Ionization Chamber

• lowest voltage
• no secondary ionization, just collect ions

• Proportional Chamber
• higher voltage – tuned
• avalanches develop but independently
• total charge proportional to particle's kinetic 

energy 
• Geiger-Müller Counter

• highest voltage
• avalanche maximal, saturation

Smoke 
Detector

Geiger 
Counter
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Regimes in a Tracking Chamber
• Characteristics

• ionization
• proportional
• Geiger-Müller

• Transitions not 
abrupt
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Multiplication Factor / Gains
• Strong signal is important

• detection efficiency
• precision of pulse height / energy relation  

• Multiplication factor, M (N
p.i.

 ∗ M) full derivation Sauli paper

• For V
0
 >> V

T
  expression 

can be approximated as
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Quantities from Equation
• k - material constant (avalanche development)
• N - number of molecules per unit volume
• C - system capacitance (ne/V)
• a - wire radius
• ε

0
- dielectric constant of gas (≈8.85 pF/m)

• V
0
 - operating voltage between anode and cathode

• V
T 
 - voltage threshold for proportional amplification
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(Multi) Wire (Proportional) Chamber
• Principle design

• single anode wire → wire plan
• cathode plane: mostly foils
• forces homogeneous field, 

sufficiently far from anode wire  
• field around wires very sensitive 

to positioning of the wires
• 25 μm wire

2mm
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What Measures a Wire Chamber?
• Running in “Geiger” amplification

• pulse time & drift velocity → position, ambiguous
• brings up issue of t

0
 calibration (per event)

• remove ambiguity with another wire under angle, stereo
• axial wires and stereo wires

• Running in proportional amplification
• in addition measure pulse height
• determines energy and thus allows dE/dx measurement
• talk more about this in another lecture
• momentum of track more precise from curvature in B

• Resolution:                                 use large radius
with   L = r

outer
 - r

inner
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Wire Chamber Design
• Constraints

• precise position measurements require precise and wire 
spacing and small wire spacing

• homogeneous fields require small wire spacing
• large fields (high amplification) requires thin wires
• rigorous calculations available (see Sauli's paper)
• geometric tolerances cause gain variations

• Geometry and problems
• sub milimeter precision required
• long chambers need strong wire tungsten/gold plated
• long chamber: large force to minimize sagging
• fixing wires becomes a difficult task
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Choice of Gas System - Magic
• Factors for gas system choice

• low working voltage
• high gain operation
• good proportionality
• high rate capability
• long lifetime
• fast recovery
• price
• etc.
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The No-Brainers
• Typical gas pressures for tracking detectors

• slightly over atmosphere:
• higher then atmosphere to minimize incoming gas “polution”
• remember a large tracker is not really air tight
• not too high (difficult to maintain), but reasonable ionization

• Typical temperatures
• most important: avoid large temperature differences
• slightly lower then room temperature
• affected by environment (silicon at T < -10○C at LHC)
• dew point is always dangerous....
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Some Gas Properties
• From Sauli's paper
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Choice of Gas
• Noble gas

• lowest electrical field necessary for multiplication
• suggests to be the main component

• Krypton/Xenon are too expensive
• Argon is fine and has highest specific ionization

• high gains do not work, consider energy balance:
• excited noble gases radiate (Ar, 11.6 eV) to dissipate energy
• radiation causes electron extraction from cathode
• secondary current develops → discharge
• gains up to 103-104 are possible

• Need to catch photons and low energy electrons
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Choice of Gas
• Polyatomic molecules (ex. hydrocarbons, alcohols)

• more than 4 atoms per molecule preferred
• various non-radiative excited states (rotational, 

vibrational modes)
• thermal or chemical energy dissipation

• thermal: through elastic collisions, heating environment
• chemical: split molecules into radicals

• excitation modes cover spectrum of noble gas radiation
• photons get captured → quenched
• also low energy electrons get absorbed

• neutralization at the cathode does not create radiation
• gains higher than 106 are achieved
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Choice of Gas 
• Polyatomic molecules, disadvantages

• radicals created in dissociation
• for high ionization gas characteristics changes rapidly
• requires sufficient gas exchange in the chamber

• open system design
• closed system design with cleaning, separate cleaning cycle

• worse, liquid and solid polymers can be created in 
neutralization – insulator layer on cathode/anode wires

• chamber performance suffers, Malter effect (1937):
• charge builds up on insulator and potential difference causes 

ionization of the wire
• ionization leads to a current, independent of the particles 

causing primary ionization → discharge
•  
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Limitations of Chambers
• High occupancy no problem

• Alice uses huge chamber for tracking: 15k tracks/event
• uses Time Projection Chamber (TPC), 3m radius

• Radiation hardness manageable
• can be managed though it is tough depending on 

design
• Drift speed is limiting factor

• high luminosity requirement at LHC (for pp operation)
• bunch crossing rate is 25 ns
• ion drift is to slow
• chamber would be “glowing”

• Alternative: GEM (http://cerncourier.com/main/article/38/9/10) in 
Micro Strip Gas Chambers
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CDF: Central Outer Tracker
• Open Cell Design (at 396 ns bunch crossing)

check it out: http://fcdfwww.fnal.gov/~burkett/COT/newhome.html
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Silicon Detectors
• Main purpose

• determine 3 dimensional vertex of tracks precisely
• improve momentum resolution for large momenta

• Also
• improve momentum resolution in general

• Basic operation principle same as gas detectors 
except E field now in a solid 
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Why (Semi) Conductors?
• Why go to solids?

• increase dq/dE
• fast response

• Semi conductors?
• high electric field (drift)
• large signal charge
• small DC current (depletion)
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Silicon Strips
• 1 dimensional ambiguity       (resolve with stereo, 90deg) 



C.Paus, LHC Physics:  Detectors: Tracking 30

Silicon Pixels
• Full 3 dimensional point

• Features
• very small, many channels
• close to beam
• radiation hardness crucial
• readout tricky, “bonding”
• established technology:

• camera, night vision devices
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Radiation Hardness
• What does it mean?

• particle damages silicon 
structure

• band gap changes
• leakage currents increase
• gain drops
• detector looses efficiency and 

precision
• detector needs exchanging
• already well planned for CMS
• diamond detector extremely 

radiation hard, but difficult

CDF Run I
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CDF Silicon Detector
• Design (0.75M channels, ≈3 m2)

• Features (all strips):
• up to 8 layers, innermost 1.2 cm, outermost 29 cm
• resolution at PV per track ≈30 μm (x,y) ≈40 μm (z)
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CMS (Silicon) Tracker
• Design: 

• 10M chan., ≈100 m2

• Barrel:   3 pixel, 10 strip
• EndCap: 2 pixel, 9 strip
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Large Silicon Detectors
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Conclusions
• Tracking detectors

• detect charged particles only
• measures: arrival time and charge deposition
• derives: 3 dimensional  location and energy

• Sensitivities
• innermost measures vertex (best hit resolution, needed)
• overall radius measures momentum

• Design
• inside, always silicon (best pixels), highest track density 

resolution: tens of μm
• outside, if possible gas detector (low material budget) 

resolution: hundreds of μm
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Next Lecture
 Track reconstruction and fitting
● general idea of track reconstruction
● particle hypothesis
● multiple scattering
● energy loss
● magnetic field
● calibration of the tracking
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