**8.882 LHC Physics** Experimental Methods and Measurements

Track Reconstruction and Fitting [Lecture 8, March 2, 2009]

## **Organizational Issues**

#### Due days for the documented analyses

• project 1 is due March 12

#### TWiki

updated the documentation to include Monte Carlo instructions

### Lecture Outline

- Track reconstruction and fitting
  - basics: alignment, particles in *B* field and matter
  - real life tracking issues
  - Monte Carlo methods and GEANT
  - tracking strategies and fitting
    - inside-out and outside-in tracking
    - combining track algorithms
    - typical failures of tracking algorithms
  - calibration of the tracking
    - efficiencies
    - momentum scale calibration
    - material calibration

## Tracking – The Definition

In particle physics, the tracking is the act of measuring the direction and magnitude of charged particles momenta.

Taken from wikipedia.org: "Tracking (particle physics)"

# Tracking also includes the act of determining the particle position.

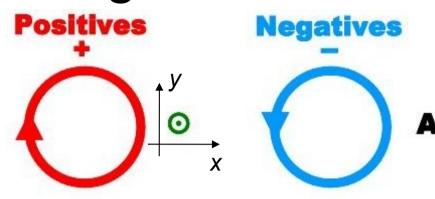
Lesson: not everything found on the Web is complete

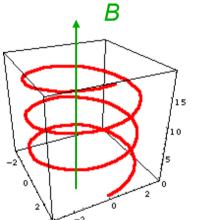
## Detector Alignment

- To perform tracking, detector has to be aligned Alignment
  - detector positions have to be known to micrometer level
  - survey of each component is a must
  - knowledge of possible component shifts crucial to simplify alignment model
  - bootstrap: use tracks make them fit better by adjusting positions (careful effects have to be disentangled)
  - alignment need to be redone regularly
    - detector opening and closing
    - temperature variations
    - detector sinking
    - detector breathes with magnetic field switching on and off, ....

## Track Reconstruction: Outline

- Reconstruct hits
  - space points, sometimes called clusters
  - determine space point uncertainties
- Perform pattern recognition
  - lay out all hits and find helical trajectories
  - identify the hits which seem to belong to trajectory
- Fit identified hits to expected trajectory (helix)
  - use space points and their uncertainties and find helix which optimally describes those hits
  - knowledge of detector material and detailed magnetic field crucial: think multiple scattering and energy loss


# Often the steps are not separated but integrated for best performance


## Charged Particles in Magnetic Field

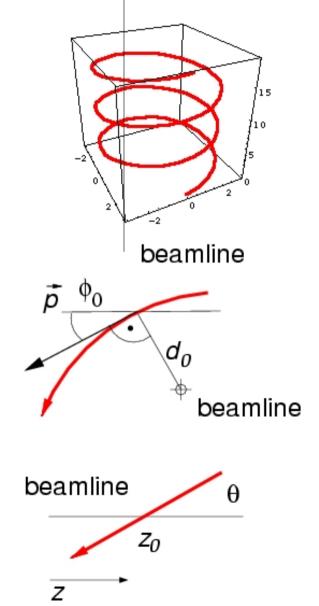
Lorentz force

 $\vec{F} = \frac{d\vec{p}}{dt} = q\vec{E} + q(\vec{v}\times\vec{B})$ 

- magnetic field: no change to momentum size, only changes direction
- electrical field irrelevant
- Assume *B* field along *z* 
  - xy-plane motion: circle
  - direction determines charge
  - momentum component in z remains constant
  - 3 dimensional: helix





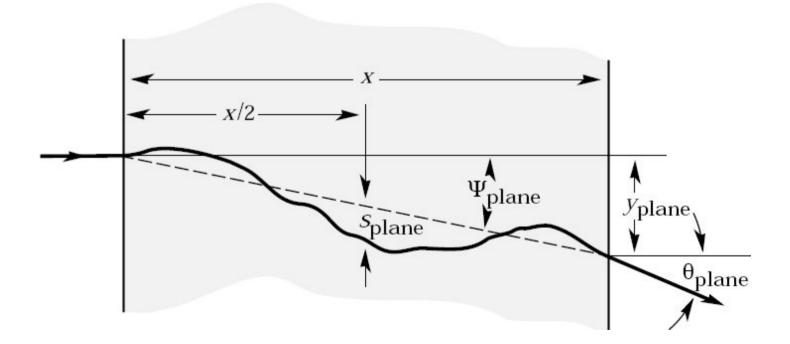

#### Real life

 magnetic fields never completely homogeneous

## Helix Parameters

Description of particle in phase space (7 params)

- particle mass (m)
- creation point (x,y,z)
- momentum vector  $(p_x, p_y, p_z)$
- **Tracking determines** 
  - trajectory of the particle
  - per se mass not included
  - our cases of tracking: exact creation point not determined because of 1 dimensional ambiguity
- Helix parameters must be 5
  - 2 dim: curvature  $\rho$  (~1/ $p_{\tau}$ ), azimuthal angle  $\varphi_{o}$ , impact parameter  $d_{o}$
  - 3 dim:  $z_o$  and  $\cot\theta$  (= $\lambda$ )

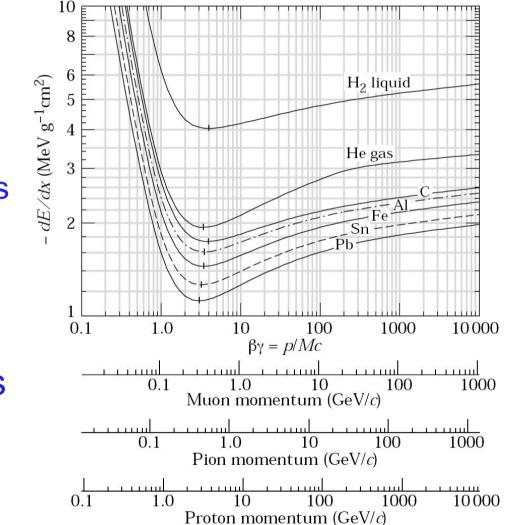



#### Particles Interactions in Matter

Multiple Scattering - Coulomb scattering approx.:

$$\left\langle \theta_{\text{proj}}^2 \right\rangle = \left\langle \theta_{\text{space}}^2 / 2 \right\rangle = \frac{(21 \text{MeV})^2 (m^2 + p^2)}{2p^4 \beta^2} \frac{x}{X_0} \left( 1 + 0.038 \ln \frac{x}{X_0} \right)^2$$

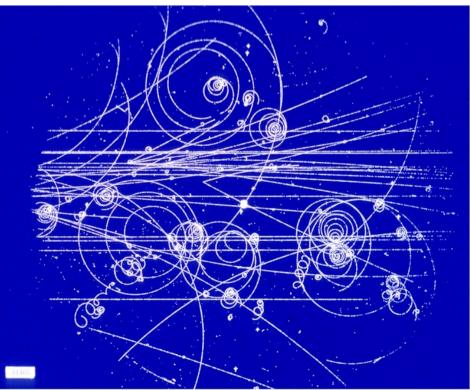
x – traversed thickness,  $X_o$  – material radiation length




always checkout PDG or GEANT implementation for reference

## Particle Interactions with Matter Energy loss (Bethe Bloch formula)

$$\frac{dE}{dx} = -Kz^2 \frac{Z}{A} \frac{1}{\beta^2} \left[ \frac{1}{2} \ln \frac{2m_e c^2 \gamma^2 \beta^2}{l^2} T^{\max} - \beta^2 - \frac{\delta}{2} \right]$$


- for moderately relativistic particles
- depends only on  $\beta$
- Very well studied effect
  - theoretically complex
  - measured in many materials
  - good documentation
  - useful for particle Id



always checkout PDG or GEANT implementation for reference C.Paus, LHC Physics: Track Reconstruction and Fitting

## Real Life Issues for Tracking

- Particle follow helix, but ....
  - inhomogeneous *B* field: helix gets bend out of shape
  - multiple scattering: blurs helix, momentum up and down
  - energy loss: helix radius decreases
- Tracking should be precise to micrometer level:
  - those effects have to be taken into account in details
  - detector simulation programs are used to implement all those issues in detail



### Monte Carlo Method

They [Monte Carlo methods] are distinguished from other simulation methods (such as molecular dynamics) by being stochastic, that is nondeterministic in some manner – usually by using random numbers (or, more often, pseudo-random numbers) – as opposed to deterministic algorithms.

as usual from wikipedia.org: "Monte Carlo method"

In High Energy physics complex systems with many components need to be simulated .... Monte Carlo technique is a must in modern HEP and is only adequate since the advent of large computers.

## Detector Simulation: GEANT

#### GEometry ANd Tracking software package

- originally developed in Fortran at CERN (1974) for HEP experiments, now available as Geant4 in C++
- based on Monte Carlo methods

Features

- allows complex detector descriptions: definitions of volumes of certain material(s)
- implements detailed particle interaction with material
- multiple scattering, energy loss, particle decay, particle creation, motion of charged particles in magnetic field
- various plugins: digitization, hadronic showers etc.

#### Output of GEANT simulation

• usually – fully digitized detector response, *i.e.* hits

## **GEANT Basic Tracking**

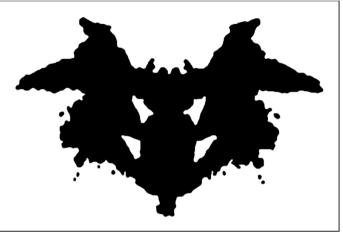
GEANT tracks particle through given detector

- any particle and their "children" can be tracked
- track is not calculated as a whole but rather in fine grained steps
  - many effects can be linearized
  - account for inhomogeneous magnetic field
  - particle interaction and decay can be stochastically introduced
- step size is optimized depending on detector material
  - keeps computing time hopefully reasonable
  - always accounts for material boundaries
- particle shower in calorimeter
  - very complex processes: many particles are created
  - hadronic showers through special programs: FLUKA, GEISHA
  - potentially very time consuming: shower cut off

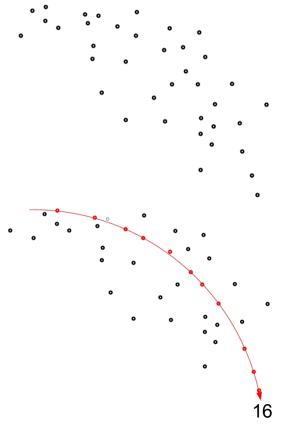
## Tracking Algorithms

There is no one tracking algorithms which does it all

Tracking process is highly complex and has many ways it can be adjusted (tuned)


Considerations

- tracker type, geometry and hits it produces
- magnetic field
- event environment
- physics analysis requirements
- computing time available


# In the following I will give you the key words and explain them.

## Pattern Recognition

- **Bubble chamber days** 
  - scanning team looked at photograph
  - recognition straight forward
- Electronically read out detectors
  - less hits per track length
  - environment got more dense (more hits)
  - algorithms needs to replace 'look at'
- Algorithm (time consuming)
  - usually start from a 'seed' in 2 dim
    - set of three points on a line in rz projection
    - a pixel (CMS), a segment (CDF superlayer) ....
  - permutations, book keeping essential
  - 3 dim hits added in next step



what pattern do you recognize?



## Tracking Algorithms

#### Outside in

- start with seed at outer end of tracking volume
- swim in general direction of the beamline
- advantage: low occupancy outside, easy pattern reco, add hits moving in one knows already where to look

#### Inside out

- follow natural particle direction, least MS
- detector cutoff in pseudorapidity has minimal effect
- seeding difficult because of high occupancy
- Difficulties
  - bias towards beamline has to be avoided as best as possible, most algorithm work better if they know where to look (duh!)

outside

## Track Fitting

#### Input to the fit

- hits identified to be part of the track
- helix trajectory model
- transport mechanism to adjust helix parameters and their uncertainties (covariance matrix)
  - multiple scattering
  - energy loss
  - magnetic field (use a detailed map)
- Fit output
  - full set of helix parameter at point 0 (ideally particle production point)
  - full covariance matrix (later essential for vertex fits)



point 1 pars(1

#### Kalman Filtering / Road Search Wikipedia says

The Kalman filter is an efficient recursive filter which estimates the state of a dynamic system from a series of incomplete and noisy measurements.

#### Applied to track reconstruction:

- use a track seed or 'tracklet' perform a fit and extrapolate to attach one or more hits
- add hit(s) based on some criteria, refit, extrapolate and add more hits etc.
- at some point the recursive algorithm has finished and a final track fit can be applied to the attached hits (intermediate fits can neglect many aspects for speed)
   Road search
  - based on a tracklet you can define a road where to look for more hits

## Combining Track Algorithms

#### General truth about tracking algorithms

- never 100% efficient, have large overlaps
- they better be complementary in some way
- final fit in most cases the same
- why do it? track algorithm inefficiency reduces the data sample for the analysis

#### Combination brings issues

- identify the tracks found with both algorithms (prune)
- choose the 'best' of the two tracks
- complicates efficiency measurement
- testing Monte Carlo simulations becomes more complex
- organizational overhead: history of track origin
- computational overhead: some tracks tried multiple times

## Typical Tracking Problems

#### Too many hits

 bad silicon hit (noise or real) on the track will seriously distort vertex determination, not so important in drift chamber

#### Too many tracks

- ghost track: track which is not really there mirror image because ambiguity in wire plane was not resolved
- split tracks: tracks which originate from one particle but where identified as separate tracks (alignment, algorithm)

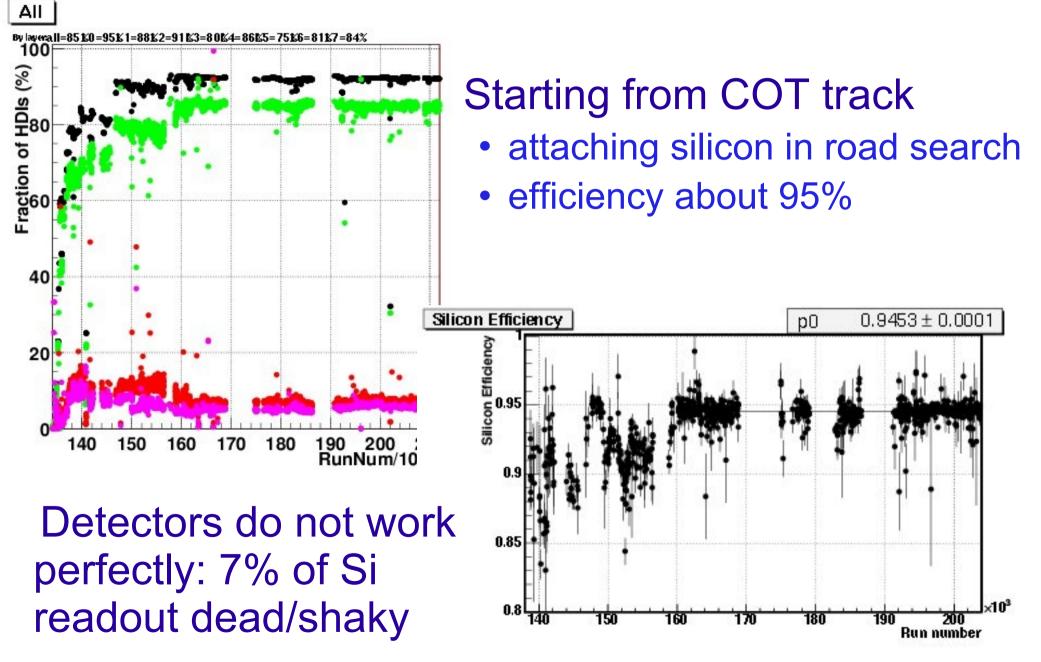
#### **Missing tracks**

- track is at the limit of the fiducial volume
- too few hits (hit efficiency too low, ex. aging chamber)
- misalignment, hit too far from 'expected' position

## CDF COT Efficiency

The Dreamdetermine efficiency from MCWhy it does not work!

- Monte Carlo usually not reliable enough at full detail of the hit simulation
- track efficiency depends on environment: many hits around or few


# eta efficiency 1.04 1.02 1 0.98 0.96 0.94 0.92 0.92 0.92 0.92 0.92 0.91 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.93 0.94 0.95 0.95 0.96 0.97 0.98

COT efficiency measured from data *W*-no track sample

#### Solution

- use well selected data samples and measure it directly
- embed Monte Carlo tracks into the data environment at the hit level

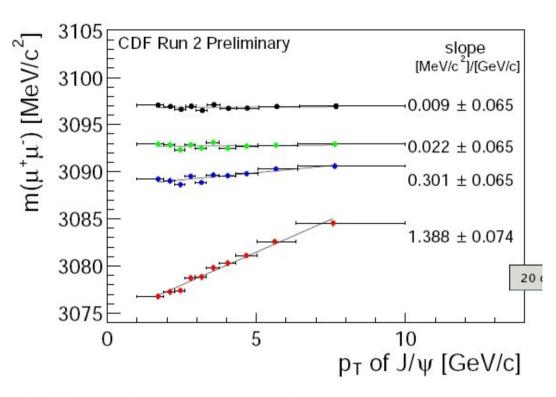
## CDF Silicon Detector and Hit Attaching



## Material and Magnetic Field

- Correct material budget? Magnetic field is precisely determined?
  - use standard candle  $(J/\psi \rightarrow \mu\mu)$  and measure it
- Effect on the reconstructed mass
  - magnetic field shifts overall scale up and down
  - material as well.... hmmm?
- Energy loss
  - depends on momentum of tracks
  - reconstructed mass will be momentum dependent
  - not the case for magnetic field
- CDF material budget of tracker at startup
  - simulation: 25 kg, weight of detector on scale: 128 kg

### Momentum Scale / Material Calibration


#### Momentum mostly from COT

+  $\Delta p_T / p_T = (0.7 \oplus 0.1 \cdot p_T)\%$ 

#### Calibration of the tracking

- + use:  $J/\psi \rightarrow \mu^+\mu^-$  (500k)
- + measure material in detector
- + measure momentum scale  $\rightarrow$  adjust *B* field
- new method invented for Run II
- + more sophisticated than Run I
- more material than in Run I

#### Building up tools step by step



#### Calibration procedure

- + raw tracks
- + nominal *E* loss corrections
- + fine tuned *E* loss corrections
- + adjust overall scale (*B* field)

## Conclusion

Charged particle tracking

- a well established process in particle physics
- very complex with many parameters to play with
- needs specific implementation at each detector

Components

- prerequisite: detector alignment
- hit reconstruction (space points with uncertainties)
- pattern recognition

track fitting

> in most cases integrated for best performance

Properties

- tracking efficiency and resolution
- momentum scale, material budget

#### Next Lecture

Analysis tips – Charge Multiplicity