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Organizational Issues
Due days for the documented analyses

● project 1 is due March 12

TWiki
● updated the documentation to include Monte Carlo 

instructions
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Lecture Outline
 Track reconstruction and fitting

● basics: alignment, particles in B field and matter
● real life tracking issues
● Monte Carlo methods and GEANT
● tracking strategies and fitting

● inside-out and outside-in tracking
● combining track algorithms
● typical failures of tracking algorithms

● calibration of the tracking
● efficiencies
● momentum scale calibration
● material calibration
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Tracking – The Definition

In In particle physicsparticle physics, the tracking is the act of , the tracking is the act of 
measuring the measuring the directiondirection and magnitude of  and magnitude of 
charged charged particlesparticles  momentamomenta..

Taken from wikipedia.org: “Tracking (particle physics)” Taken from wikipedia.org: “Tracking (particle physics)” 

Tracking also includes the act of determining Tracking also includes the act of determining 
the particle position.the particle position.

Lesson: Lesson: not everything found on the Web is completenot everything found on the Web is complete

http://en.wikipedia.org/wiki/Particle_physics
http://en.wikipedia.org/wiki/Direction
http://en.wikipedia.org/wiki/Subatomic_particle
http://en.wikipedia.org/wiki/Momentum
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Detector Alignment
 To perform tracking, detector has to be aligned
 Alignment

● detector positions have to be known to micrometer level
● survey of each component is a must
● knowledge of possible component shifts crucial to simplify 

alignment model
● bootstrap: use tracks make them fit better by adjusting 

positions (careful effects have to be disentangled)
● alignment need to be redone regularly

● detector opening and closing
● temperature variations
● detector sinking
● detector breathes with magnetic field switching on and off, ....
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Track Reconstruction: Outline
 Reconstruct hits

● space points, sometimes called clusters
● determine space point uncertainties

 Perform pattern recognition
● lay out all hits and find helical trajectories
● identify the hits which seem to belong to trajectory

 Fit identified hits to expected trajectory (helix)
● use space points and their uncertainties and find helix 

which optimally describes those hits
● knowledge of detector material and detailed magnetic 

field  crucial: think multiple scattering and energy loss

 Often the steps are not separated but integrated for 
best performance
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Charged Particles in Magnetic Field
 Lorentz force

● magnetic field: no change to 
momentum size, only changes 
direction

● electrical field irrelevant

 Assume B field along z
● xy-plane motion: circle
● direction determines charge
● momentum component in z 

remains constant
● 3 dimensional: helix

B

x

y

 Real life
● magnetic fields never 

completely homogeneous



C.Paus, LHC Physics:  Track Reconstruction and Fitting 8

Helix Parameters

● particle mass (m)
● creation point (x,y,z)
● momentum vector (p

x
,p

y
,p

z
)

 Tracking determines
● trajectory of the particle
● per se mass not included
● our cases of tracking: exact creation 

point not determined because of 1 
dimensional ambiguity

 Helix parameters must be 5
● 2 dim: curvature ρ (~1/p

T
), azimuthal 

angle φ
0
, impact parameter d

0
 

● 3 dim: z
0
 and cotθ (=λ)

 Description of particle in phase space (7 params)
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Particles Interactions in Matter
 Multiple Scattering - Coulomb scattering approx.:

   x – traversed thickness, X
0
 – material radiation length

always checkout PDG or GEANT implementation for reference
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Particle Interactions with Matter
 Energy loss (Bethe Bloch formula)

always checkout PDG or GEANT implementation for reference

● for moderately relativistic particles
● depends only on β

 Very well studied effect
● theoretically complex
● measured in many materials
● good documentation
● useful for particle Id
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Real Life Issues for Tracking
 Particle follow helix, but ....

● inhomogeneous B field: helix gets bend out of shape
● multiple scattering: blurs helix, momentum up and down
● energy loss: helix radius decreases

 Tracking should be precise to micrometer level:
● those effects have to be 

taken into account in details
● detector simulation 

programs are used to 
implement all those issues 
in detail
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Monte Carlo Method

They [Monte Carlo methods] are distinguished 
from other simulation methods (such as 
molecular dynamics) by being stochastic, that is 
nondeterministic in some manner – usually by 
using random numbers (or, more often, 
pseudo-random numbers) – as opposed to 
deterministic algorithms.

as usual from wikipedia.org: “Monte Carlo method”

 In High Energy physics complex systems with many 
components need to be simulated .... Monte Carlo 
technique is a must in modern HEP and is only 
adequate since the advent of large computers.

http://en.wikipedia.org/wiki/Molecular_dynamics
http://en.wikipedia.org/wiki/Stochastic
http://en.wikipedia.org/wiki/Nondeterministic
http://en.wikipedia.org/wiki/Random_number
http://en.wikipedia.org/wiki/Pseudo-random_number
http://en.wikipedia.org/wiki/Deterministic_algorithm
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Detector Simulation: GEANT
 GEometry ANd Tracking software package

● originally developed in Fortran at CERN (1974) for HEP 
experiments, now available as Geant4 in C++

● based on Monte Carlo methods
 Features

● allows complex detector descriptions: definitions of 
volumes of certain material(s)

● implements detailed particle interaction with material
● multiple scattering, energy loss, particle decay, particle 

creation, motion of charged particles in magnetic field
● various plugins: digitization, hadronic showers etc. 

 Output of GEANT simulation
● usually – fully digitized detector response, i.e. hits
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GEANT Basic Tracking
 GEANT tracks particle through given detector

● any particle and their “children” can be tracked
● track is not calculated as a whole but rather in fine 

grained steps
● many effects can be linearized
● account for inhomogeneous magnetic field
● particle interaction and decay can be stochastically introduced

● step size is optimized depending on detector material
● keeps computing time hopefully reasonable
● always accounts for material boundaries

● particle shower in calorimeter
● very complex processes: many particles are created
● hadronic showers through special programs: FLUKA, GEISHA
● potentially very time consuming: shower cut off
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Tracking Algorithms
There is no one tracking algorithms which does it all

 Tracking process is highly complex and has many 
ways it can be adjusted (tuned)
 Considerations

● tracker type, geometry and hits it produces
● magnetic field
● event environment
● physics analysis requirements
● computing time available

 In the following I will give you the key words and 
explain them.
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Pattern Recognition
 Bubble chamber days

● scanning team looked at photograph
● recognition straight forward

 Electronically read out detectors
● less hits per track length
● environment got more dense (more hits)
● algorithms needs to replace 'look at'

 Algorithm (time consuming)
● usually start from a 'seed' in 2 dim

● set of three points on a line in rz projection
● a pixel (CMS), a segment (CDF superlayer) ....

● permutations, book keeping essential
● 3 dim hits added in next step

what pattern do you recognize?
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Tracking Algorithms
 Outside in

● start with seed at outer end of tracking volume
● swim in general direction of the beamline
● advantage: low occupancy outside, easy pattern reco, 

add hits moving in one knows already where to look
 Inside out

● follow natural particle direction, least MS
● detector cutoff in pseudorapidity has minimal effect
● seeding difficult because of high occupancy

 Difficulties
● bias towards beamline has to be avoided as best as 

possible, most algorithm work better if they know where 
to look (duh!)
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Track Fitting
 Input to the fit

● hits identified to be part of the track
● helix trajectory model
● transport mechanism to adjust helix parameters and their 

uncertainties (covariance matrix)
● multiple scattering
● energy loss
● magnetic field (use a detailed map)

 Fit output
● full set of helix parameter at point 0 (ideally particle 

production point)
● full covariance matrix (later essential for vertex fits)
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Kalman Filtering / Road Search
 Wikipedia says

The Kalman filter is an efficient recursive filter which 
estimates the state of a dynamic system from a series of 
incomplete and noisy measurements.

 Applied to track reconstruction:
● use a track seed or 'tracklet' perform a fit and extrapolate 

to attach one or more hits
● add hit(s) based on some criteria, refit, extrapolate and 

add more hits etc.
● at some point the recursive algorithm has finished and a 

final track fit can be applied to the attached hits 
(intermediate fits can neglect many aspects for speed)

 Road search
● based on a tracklet you can define a road where to look 

for more hits

http://en.wikipedia.org/wiki/Infinite_impulse_response
http://en.wikipedia.org/wiki/Dynamic_system
http://en.wikipedia.org/wiki/Noise
http://en.wikipedia.org/wiki/Measurement
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Combining Track Algorithms
 General truth about tracking algorithms

● never 100% efficient, have large overlaps
● they better be complementary in some way
● final fit in most cases the same
● why do it? track algorithm inefficiency reduces the data 

sample for the analysis
 Combination brings issues

● identify the tracks found with both algorithms (prune)
● choose the 'best' of the two tracks
● complicates efficiency measurement
● testing Monte Carlo simulations becomes more complex
● organizational overhead: history of track origin
● computational overhead: some tracks tried multiple times
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Typical Tracking Problems
 Too many hits

● bad silicon hit (noise or real) on the track will seriously 
distort vertex determination, not so important in drift 
chamber

 Too many tracks
● ghost track: track which is not really there – mirror image 

because ambiguity in wire plane was not resolved
● split tracks: tracks which originate from one particle but 

where identified as separate tracks (alignment, algorithm)
 Missing tracks

● track is at the limit of the fiducial volume
● too few hits (hit efficiency too low, ex. aging chamber)
● misalignment, hit too far from 'expected' position



C.Paus, LHC Physics:  Track Reconstruction and Fitting 22

CDF COT Efficiency
 The Dream

● determine efficiency from MC
 Why it does not work!

● Monte Carlo usually not reliable 
enough at full detail of the hit 
simulation

● track efficiency depends on 
environment: many hits around 
or few

COT efficiency measured from data
    W-no track sample Solution

● use well selected data samples and measure it directly
● embed Monte Carlo tracks into the data environment at 

the hit level
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CDF Silicon Detector and Hit Attaching

 Starting from COT track
● attaching silicon in road search
● efficiency about 95%

 Detectors do not work 
perfectly: 7% of Si 
readout dead/shaky
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Material and Magnetic Field
 Correct material budget? Magnetic field is precisely 
determined?

● use standard candle (J/ψ → μμ)  and measure it
 Effect on the reconstructed mass

● magnetic field shifts overall scale up and down
● material as well.... hmmm?

 Energy loss
● depends on momentum of tracks
● reconstructed mass will be momentum dependent
● not the case for magnetic field

 CDF material budget of tracker at startup
● simulation: 25 kg,  weight of detector on scale: 128 kg
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Momentum Scale / Material Calibration
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Conclusion
 Charged particle tracking

● a well established process in particle physics
● very complex with many parameters to play with
● needs specific implementation at each detector

 Components
● prerequisite: detector alignment
● hit reconstruction (space points with uncertainties)
● pattern recognition
● track fitting 

 Properties
● tracking efficiency and resolution
● momentum scale, material budget

in most cases integrated for best performance
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Next Lecture
 Analysis tips – Charge Multiplicity
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