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| 8.952 LECTURE 24 I

Looking Back: Conformal
Newtonian Gauge

May 4, 2009

‘ Conformal Newtonian Gauge |

oC; N aC;
ord  Oxt

The metric:

ds® = —(1 +2®)dt? + a*(t) {(1 —2W)6;; + + Di]»] dz’ da? |

where
oC; 0 0D;;
oz’ T Oxt
Leads to a Poisson-like equation, Weinberg’s (5.3.26):

=0, D;=0.

1
—V2W = 4nG 6p — 120G H (p + p) 6u .
a

What is the significance of the 2nd term on the right?

5 v
Note that du is not even local! du; = 8871: + 6u) , where 9du =

)
ox?
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Newtonian Gauge: Einstein Equations

Rgyo equation:

1 6 3d
VP4 =4
a

a a

(® 4 2W) + 3V = 47 G(dp + 30p + omii)
where the correction to the perfect fluid energy-momentum tensor is written

omi; = 0;0;m° + 61»77;/ +9;my + 7'1'3; :

with v 9T
or! s
87;2:0, aﬂ?:o, k=0, so omy = V215 .

Note that the LHS of the Ryg equation is not Ryg. Perturbations from the
metric in

Tﬁsrfem = P9uv a4 (P + p)uuuu
are brought to the LHS of the equation.
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Ry; equation:

) . ) .. .2
o (00 + 20,0) + 2v2¢; o (& - L) sy,
a 2 a?

a

R;; equation:
i a2 T B L
2(2+25 <1>+E(<1>+6\11)+\1:—a—2v\1: b+ =50:0; (= ¥)

1 . . 34 . )
= 5 (6101 =F 6101) = 5; (6101 aF 6]01)
1/ . 3 . 1
— 5 (DU + 3%D” — ;VZDU> = 47rG(5p — 6[) + 671'“) 6,']' — 871'G(57Ti]' o
Trace equation (R;;):
i a2 afe N e 1, 1,
32(2+25 )0+ 2 (b46d) + 8- V2| + Vi@ - W)
a a a a a

= 4nG(38p — 30p + omy;) -
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Rgyo equation:

3a

a

6i
Cl(I)+

1 . . ..
;v2<1>+ — (® + 2W) + 3V = 47G(5p + 36p + omyi) .

Rewrite of R;; equation:

6 (9+2“—> o+ 32 (<I>+6\I/> + 30 + S V(@ — 4)
a a a

o
=47 G(36p — 3dp + dmy) -
Subtracting R;; equation from Rgy equation and dividing by 4:

1 .
;v%p —3H(V + H®) = 47G op ,

where H = a/a.
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The extra term is related to Weinberg’s expression through the Ry, equation:

. . 1 ) . .2
2 (00 + 20,0 ) + 2V =2 (2 - L
a 2 a 2

a extract scalar

part
(U + H®) = Hou = —47G(p+ p) ou ,
SO 1
Fv%f = 471G 6p — 12nGH(p + p) ou. .
But why is this extra term herel?
I I I I I 8.952: May 4, 20';;““"e o _5_

Look at the divergence of the fluid velocity:

out
[ oA
W= + T u
_ 1 3 - _ 1 1
=3H + Eduz aF iHhOO — 2Hh“ aF ﬁh“ — Eazhz() o

In Newtonian gauge,

_ 1 .
w'y, = 3H + —0u; — 3(V + HY) .
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You may recall that on 4/20/09 we used this relation to show that the
perturbation variable
Rq= -V, + H oy,

can be related to the variable
8
K=ad? [%Gmoc — Hﬁjc} ,

where pioc is the local energy density p+ dp, and Hioe = %u“w is the local

expansion rate for the comoving fluid. Note that K is a local version of the
Robertson-Walker curvature constant &, so it is immediately apparent that
K is gauge-invariant, since any scalar which is constant in the background
solution is gauge-invariant. It is also apparent that it is conserved in the
long wavelength limit, since it is constant in a homogeneous solution. K
was found to be related to R by

2
K=—-V?R.
3v
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For points at rest in the coordinate system,

wt,, =3H — 3(V + H®) = 3(H + §Heoora)

where 0 Heoord = —(\il + H®) is the perturbation in the local Hubble expansion
rate for points at rest in the coordinate system. Since the local Hubble rate is
perturbed, so is the local critical density:

3H? 3H0H 3H .
= =——(UV+HD).
47G 47rG( + )

So the Poisson equation can be written

1 9
;V2\IJ =47G p+ 3H(¥ + HD)
=47 G(6p — pcr) -

Thus the equation is telling us that the Newtonian potential responds to
perturbations in the mass density relative to the local critical density.
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