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PROBLEM SET 4

DUE DATE: Friday, April 3, 2009, at 5 pm.

ANNOUNCEMENT: A second makeup class of 8.952 (in addition to the one
held on March 20) will be held on Friday April 10, from 11:05 – 11:55 am, again in
Room 1-273.

PROBLEM 1: CANONICAL FORMULATION OF GEODESIC MO-
TION IN GENERAL RELATIVITY (15 points)

Suppose that a timelike path is described by xµ(s), where s is an arbitrary
parameter that varies between s1 and s2. Then the proper time for this path can
be written as

τ =
∫ s2

s1

√
−gµν

dxµ

ds
dxν

ds
ds , (1)

where the metric is assumed to have the signature (−+++).

(a) Show that the extremization of the proper time implies that

d
ds

[
1√
A
gµν

dxν

ds

]
=

1
2
√
A

∂gλσ

∂xµ

dxλ

ds
dxσ

ds
, (2)

where
A = gµν

dxµ

ds
dxν

ds
. (3)

(b) Show that this formula can be used to obtain the more standard equation for
geodesic motion,

d2xµ

dτ2
= −Γµ

λσ

dxλ

dτ
dxσ

dτ
, (4)

where
Γµ

λσ =
1
2
gµρ (∂λgρσ + ∂σgρλ − ∂ρgλσ) . (5)

[Suggestion: Since s is an arbitrary parameter, you can begin by choosing the
special case s = τ , where τ is the proper time, and hence A = 1. Then expand
the left-hand side of Eq. (2) and rearrange.]

(c) If we take s to be t, the coordinate time variable, then Eq. (1) takes the form
of Hamilton’s principle of classical mechanics, where τ is interpreted as the
action, with a Lagrangian

L

(
xi,

dxi

dt

)
= −m

√
−gµν(xi, t)

dxµ

dt
dxν

dt
, (6)
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where m is the mass of the particle. Note that x0 ≡ t, so dx0/dt ≡ 1. The
factor of −m on the right-hand side of Eq. (6) has no effect on the equations
of motion, but is inserted so that the canonical momenta and Hamiltonian
have familiar forms. Using this Lagrangian, show that the momenta conjugate
to the position coordinates xi, where i ranges from 1 to 3, are the covariant
four-momentum components pi, where

pµ ≡ gµνp
ν ≡ mgµν

dxµ

dτ
. (7)

(d) Show that the Hamiltonian, defined as usual by

H(xi, pi, t) = pi
dxi

dt
− L , (8)

is given simply by

H = −p0 , (9)

where p0 is the zeroth (i.e. time) component of the covariant four-momentum
pµ. Here the independent variables are x1, x2, x3, p1, p2, p3, and time t, with p0

determined from the independent variables by requiring that

p2 = gµν(xi, t)pµpν = −m2 . (10)

(e) Finally, show directly that Hamilton’s equations,

ẋi =
∂H

∂pi
, ṗi = −∂H

∂xi
, (11)

are equivalent to the geodesic equation (2), with

ẋi =
pi

p0
. (12)

Note that this is a standard canonical system, which therefore automatically evolves
with a conserved phase space volume, as described by Liouville’s theorem. Note
also that the phase space volume is simply dx1dx2dx3dp1dp2dp3, as usual, with no
corrections associated with the metric on the spacetime.
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PROBLEM 2: LORENTZ-INVARIANCE OF THE PHASE SPACE
VOLUME IN SPECIAL RELATIVITY (10 points)

The formalism developed in Problem 1 holds for any metric, which means it
applies to the Minkowski metric, as a special case. In this problem we will restrict
ourselves to this special case, and we will also assume for simplicity that the particles
under discussion have nonzero mass. The nonzero mass implies that there exists a
rest frame, which makes the analysis simpler.

Suppose that a phase space density N is defined so that the expected number
of particles in a phase space volume dx1dx2dx3dp1dp2dp3 is given by

Number of particles = Ndx1dx2dx3dp1dp2dp3 . (13)

Show that the phase space density is a Lorentz scalar, in the sense that in a mov-
ing (primed) frame, the phase space density N ′(x′i, p′i, t

′) is related to that in the
original frame by

N ′(x′i, p′i, t
′) = N (xi, pi, t) , (14)

where x′i, p′i, and t′ are the values in the primed frame that correspond to xi, pi,
and t in the original frame.

(Suggestion: One way to proceed is to first consider the special case where
�p is at rest, pi = 0 for all i. Then each interparticle spacing behaves as a ruler
that is boosted from its rest frame, so it contracts by a factor of γ in the direction
of the motion. Show that the momentum-space volume changes in the right way
to compensate, leaving the product d3x′ d3p′ invariant. Once your have shown this
result for the special case, explain how it implies the Lorentz-invariance of the phase
space volume in the general case.)

PROBLEM 3: GENERAL COORDINATE INVARIANCE OF THE
PHASE SPACE VOLUME IN GENERAL RELATIVITY (20
points)

In this problem we will show that the invariance of the phase space density holds
not only for Lorentz transformations, but for arbitrary coordinate transformations
in general relativity. Again the argument can be simplified if we make use of the
rest frame, but in fact we will want to apply this argument to photons, which of
course have no rest frame. We will therefore construct a derivation that makes
no use of the rest frame. A general argument is given by Viatcheslav Mukhanov
in Physical Foundations of Cosmology (Cambridge University Press, 2005),
which I believe is generally a very good book. Nonetheless, his argument for the
phase space invariance, on p. 358, appears to ignore all the complications that arise
when the coordinate transformation changes the definition of time. If any of you
find a way to justify his argument as written, please let me know.
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We begin by examining the general problem of how to describe the density
of things that move. At this point we can be very general, considering arbitrary
“particles” that move in some arbitrary way through some arbitrary space described
by some arbitrary coordinate system. We will, however, assume one important
restriction: the velocity of the particles will be uniquely determined by their position
and the time. Suppose the space is described by n coordinates, which we will call
ξ1 , . . . , ξn, and there is also a time coordinate t. For some purposes we will include
t as one of the coordinates, in which case we will call them Xµ, with X0 = t,
X i = ξi, for i = 1 to n. The particles will be labeled by an index α, and the α′th
particle travels on a trajectory described with an arbitrary parameter λ:

ξi = ξi
α(λ)

t = tα(λ) ,
(15)

or in a more compact notation,

Xµ = Xµ
α(λ) . (16)

We define a density ρ(ξi, t) so that ρ(ξi, t)dnξ is the number of particles in a volume
dnξ about ξi at time t.

(a) Show that ρ can be written as

ρ(ξi, t) =
∑
α

∫
dλ δn

(
ξi − ξi

α(λ)
)
δ
(
t− tα(λ)

) dtα
dλ

=
∑
α

∫
dλ δn+1

(
Xµ −Xµ

α(λ)
) dtα
dλ

.

(17)

(b) Now consider an arbitrary change in coordinates, which might involve the time
variable along with the other coordinates. Let the transformation be defined
by the functions

X ′µ = X ′µ
c (Xν) (18a)

and their inverse,
Xµ = Xµ

c (X
′ν) , (18b)

where I use the subscript c for the coordinate transformation. The trajectories
in the new system are then given by

X ′µ = X ′µ
c (Xν

α(λ)) , (19)
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and the density function ρ′(ξ′i, t′) is defined in terms of the primed coordinate
trajectories by a formula analogous to Eq. (17). Show that the new density
function ρ′(ξ′i, t′) is related to ρ(ξi, t) by

ρ′(ξ′i, t′) = ρ(ξi, t)× Det
(
∂Xµ

c

∂X ′ν

) (
∂t′c
∂t

+
∂t′c
∂ξi

dξi

dt

)
. (20)

Here we used our assumption that the velocities depend only on ξi and t, so
that the last factor, which depends on dξi/dt, could be factored out of the sum
and integral defining ρ.

Note that last factor in Eq. (20) differs from unity only when the transformation
changes the equal-time hypersurfaces. In the method suggested here, this factor
was found from the properties of delta functions. It is worth noting that in a more
geometric approach, this factor would arise directly from the redefinition of the equal
time hypersurfaces. For example, if two particles cross an equal-t hypersurface at the
same value of the parameter λ, they will in general cross the equal-t′ hypersurface
at different values of λ, so their motion will cause their separation to be different
on the two equal-time hypersurfaces. In the special relativity calculation of the
previous problem, this space-dependent time offset was accounted for by the usual
calculation of Lorentz contraction, which computes the distance between the two
ends of the ruler measured at the same time in the new frame. In this problem,
if one solves it by the direct computation of a Jacobian, the Jacobian must be
computed for the transformation that maps the unprimed phase space coordinates
on an equal-t hypersurface to the primed phase space coordinates that correspond
to the same trajectories, but evaluated on an equal-t′ hypersurface.

Some of you may wish to derive Eq. (20) by some other method, since there are
many ways to derive it. If you wish to try a different method, it may help to be
reminded of the following mathematical identities:

Det
(
∂ξi

c

∂ξ′j

)
=

∂t′c
∂t

Det
(
∂Xµ

c

∂X ′ν

)
. (21)

Det (δi
j + uivj) = 1 + uivi . (22)

∂ξ′ic
∂ξj

∂ξj
c

∂ξ′k
= δi

k − ∂ξ′ic
∂t

∂tc
∂ξ′k

. (23)

∂t′c
∂ξj

∂ξj
c

∂ξ′k
= −∂t′c

∂t

∂tc
∂ξ′k

. (24)

∂t′c
∂ξj

∂ξj
c

∂t′
= 1− ∂t′c

∂t

∂tc
∂t′

. (25)

Eq. (21) is Cramer’s rule for the inverse of a matrix, making use of the fact that
∂t′c/∂t is the 0–0 component of the inverse of the matrix ∂Xµ

c /∂X
′ν . Eq. (22) is
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demonstrated by using DetM = Det (O−1MO), where we can choose O to be an
orthogonal matrix that rotates vi so that it points along one of the coordinate axes.
The remaining three identities are special cases of the chain rule,

∂Xµ
c

∂Xλ

∂Xλ
c

∂Xν
= δµ

ν .

Now we are ready to apply Eq. (20) to the phase space problem. Here n = 6, with

ξ1 = x1 , ξ2 = x2 , ξ3 = x3 , ξ4 = p1 , ξ
5 = p2 , ξ

6 = p3 . (26)

Consider a change of spacetime coordinates

x′µ = x′µc (xν) , (27)

so
t′ = x′0c (x

ν) ≡ t′c(x
ν) ,

x′i = x′ic (x
ν) ,

p′i =
∂xν

c

∂x′i
pν

=
∂xj

c

∂x′i
pj +

∂tc
∂x′i

p0(x1, x2, x3, p1, p2, p3, t) ,

(28)

where p0(x1, x2, x3, p1, p2, p3, t) is determined by Eq. (10) (from Problem 1).

(c) Now it’s time for you to finish the calculation, showing that the phase space
density N (xi, pi, t), as defined by Eq. (13) (in Problem 2), is invariant under
general coordinate transformations. The recommended method is to use the
general formula in Eq. (20), calculating the necessary derivatives from Eqs. (28),
and making use of the Hamiltonian equations of motion (Eqs. (9) and (11)).
You will probably find it helpful to be aware of the identities in Eqs. (21)–(25).

PROBLEM 4: SPECIFIC INTENSITY (10 points)

A quantity of interest to astronomers is the specific intensity Iν , defined as the
electromagnetic energy received by a detector per unit time, per unit detector area,
per unit frequency interval, per unit solid angle. It is described, for example, in
Cosmological Physics, by John A. Peacock (Cambridge University Press, 1999)
at pp. 290 and 395. Show that, for each circular polarization of light, the specific
intensity is related to the photon phase space density by

Nγ =
c2

(2πh̄)4
Iν

ν3
. (29)

(Suggestion: a key step is to express the momentum volume d3p in terms of the
solid angle dΩ, the frequency ν, and the frequency interval dν.) Combined with
the previous result, Eq. (29) guarantees that Iν/ν

3 is Lorentz-invariant and fact
invariant under general coordinate transformations.


